
Abstract— Traditionally, high-end clusters use special
purpose network hardware, thereby losing the cost benefit
offered in mass market.  Riding on the wave of Ethernet
popularity, Gigabit Ethernet is fast becoming a commodity item.
Given a scalable switching architecture, we believe it can be a
cost-effective alternative to interconnect parallel systems.  This
study evaluates the performance of the Avici Gigabit Ethernet
switch against Myrinet.  We simulate a 256-node cluster running
core algorithms from real parallel applications, and then compare
raw performance figures such as bandwidth and latency, as well
as more complex parameters such as jitter, routing, and points of
congestion in the fabric.

Index terms—Gigabit Ethernet, Terabit Switch Router,
simulation, parallel algorithms

A. INTRODUCTION

The idea of cluster computing is to aggregate machine
rooms full of relatively cheap hardware, connected with
some sort of network, and apply the combined force of
the individual machines to a single calculation.  The
hardware employed in a cluster is generally from the
volume personal computer market, so as to leverage the
cost advantages of buying commodity hardware. As this
architecture has distributed memory, parallel processes
communicate using a message-passing paradigm.
Unfortunately, highspeed interconnect is completely
irrelevant for the mass market.  High-end cluster users,
therefore, have to rely on special purpose hardware such
as Myrinet [1], HiPPI [2], or ServerNet [3] for their
message passing infrastructures, losing the cost benefit
offered by the commodity market.

The purpose of this study is to identify a scalable and
cost-effective alternative to the traditionally expensive
interconnects.  Riding on the wave of Ethernet
popularity, Gigabit Ethernet is fast becoming a
commodity item.  In addition to bandwidth
enhancement, the full-duplex mode of Gigabit Ethernet
[4] allows switched access at full channel capacity
without the limitation of CSMA/CD.  Therefore, we
believe that, given a scalable switching architecture,
Gigabit Ethernet can be a cost-effective solution for
cluster computing.

The remainder of this paper discusses the simulation
results of the Avici based Gigabit Ethernet switch, and
the methods we used, which involve a mix of “artificial”
basic tests and simulations of core algorithms from real
parallel applications.  We compare our results against an
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identical study of Myrinet, a popular interconnect
technology, and tally the positive and negative aspects
of each.

B. INTERCONNECT  TECHNOLOGIES

The following paragraphs describe the network
technologies we considered in the simulations that will
be discussed in Section C.  In each section we calculate
the current pricing for a prototypical 256-node cluster, a
size which is feasible for most high-end cluster builders.

1. Myrinet

Myricom’s Myrinet is one of the more cost-effective,
special purpose interconnection technologies.  It
interconnects hosts and switches using 1.28 Gb/s full-
duplex links.  The Myrinet PCI host adapter can be
programmed to interact directly with the host processors
for low-latency communications, and with the network
to send, receive, and buffer packets.  All Myrinet
packets carry a source-based routing header to provide
intermediate switches with forwarding directions.
Myrinet packets can be of arbitrary size.

The current Myrinet switch is a 16-port crossbar.
These ports can be used to interconnect either switches
or processors, allowing arbitrary network topologies.
However, the severe cable length restriction of 35 feet
impedes the construction of complex topologies.  Thus,
for our large-scale simulations, we chose a two
dimensional torus, with dual interswitch connections, as
the best tradeoff in terms of area and cost.  Myrinet sells
a network interface card for $1700, 16-port switches for
$5000, and cables for $200.  For the topology described
above, the total cost for 256 nodes is 256 x $1700 + 32 x
$5000 + 12 x 32 x $200 = $670K.

2. Avici terabit switch router [5]

The Avici switch router uses two direct-connect
networks [6] as its switching fabric to achieve high
performance, scalability, and robustness.  The dual
fabric connects switching nodes (or line cards) using
twelve 20 Gb/s full-duplex links to form two three-
dimensional toroidal meshes (Fig. 1).  As such, the
Avici switch router can be incrementally expanded to
include up to 1120 cards without blocking.  At 16
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Gigabit-Ethernet ports per card, this configuration can
interconnect up to 17,920 compute nodes.

(a)

(b)

Figure 1.  Avici switch router packaging: (a) backplane and (b) system.

Similar to Myrinet, the Avici router uses wormhole
routing inside the fabric to achieve low latency.  Unlike
Myrinet, however, rather than buffering the entire
message inside the network, the Avici router segments
its messages into 72-byte scheduling units (flits) and
exercises credit-based flow control to prevent flit loss.
The Avici router eliminates blocking doing wormhole
routing using per-connection buffer management and
scheduling, and over-provisioning fabric links.  Because
of the huge speed mismatch between Gigabit Ethernet
and the fabric link (1:20), the Avici router stores each
incoming Gigabit Ethernet packet before forwarding to
prevent buffer underrun.  A Gigabit Ethernet card costs
around $700, its fiber cable $75 each.  Avici projects a
256-port switch for $350,000.  The total cost for a 256-
node cluster is, therefore, 256 x ($700 + $75) +

$350,000 = $550K.  We anticipate further price
reduction, as Gigabit Ethernet becomes more widely
deployed.

C. SIMULATION METHODOLOGIES

A previous study [7] demonstrated that a realistic
model of a distributed memory system must strike a
balance between detail and simplicity in order to reveal
important bottlenecks without making analysis of
interesting problems intractable.  This model, called
LogP, describes a parallel system using the following
four parameters: the computing bandwidth, the
communication bandwidth, the communication delay,
and the efficiency of coupling communication and
computation. We present the methodology for the
abstraction of the computation bandwidth of compute
nodes in section C.1.  Sections C.2 and C.3 describe two
existing simulation packages that we used to derive the
respective communication bandwidth and delay of the
Myrinet and the Avici technologies.  Finally, we
present, in Section C.4, the computation representation
of a kernel parallel code used at Sandia to provide the
parameters that couple communication and computation.

1. Host overhead abstraction

The end-to-end latency in passing a point-to-point
message includes 1) the processing overhead of some
message-passing interface (e.g., MPI). 2) The processing
of the Operating System’s transport/network protocols
(e.g., portals or TCP/IP) and their associated memory
copies. 3) The network interface card’s medium access
overhead. 4) The network’s transmission delay. We
combine all but the network transmission delay into the
host overhead abstraction.  We wrote an MPI-based
“ping-pong” program that measures one-way latency of
various length messages on our testbed.  Node A starts
its timer, sends a message to Node B, then receives a
copy of the message from Node B, and stops its timer.
The recorded value (i.e., the one-way latency) is half of
this round-trip timing period, and to ensure accuracy,
200 trials are averaged together.  Our simulator
extrapolates one-way latency from the linearly fitted
plots of the experimental measurements (Fig. 2).
Software overhead was calculated by subtracting the
transmission delay from the derived one-way latency.
We further divide the results by two, to account for
processing delay incurred at the sender and the receiver,
and they are plotted, as a function of message sizes, in
Fig. 3.
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Figure 2.  One-way latency

Figure 3.  Host overhead (µs)

2. Avici simulator

Allen King and coworkers at Avici wrote a simulator
[8] to be used in planning the switch hardware they
built.  We inserted hooks into the simulator by which we
could feed our own traffic patterns into the Avici fabric.
In addition, various other calls are used by the fabric and
the application code modules to notify each other of
initialization, completion, and to acquire or change
fabric parameters.  We also added the modeling of a line
card, which connects 16 Gigabit-Ethernet ports into the
Avici backplane.  An interface layer handles the details
of segmentation and reassembly so that an application is
insulated from the transport details.

3. Myrinet simulator

The Myrinet simulator [9] was initially developed by
Chen-Chi Kuo as a graduate student in the Computer
Science Department at the University of Utah to be used

in their full system simulator.  We adapted just the
Myrinet part of the simulator, and added an event
handling mechanism along with the packet tracking and
upper layer frameworks written for the Avici simulator
interface.  We generated hardware parameters from
Myricom's documentation or by performing empirical
tests on our cluster.  Our connectivity topology is a two-
dimensional (4 x 8), wrapped torus of switches (Fig. 4),
with eight nodes to a switch, and was chosen for its
scalability properties over more complex topologies.
The links between switches consist of two parallel
cables, giving a doubled hop-to-hop bandwidth of 2.56
Gb/s, and we generate routes using a utility provided by
Myricom which implements the up*/down* algorithm.
The same application codes designed for use with the
Avici simulator couple directly to the interface we wrote
to communicate with Utah's flit-level Myrinet simulator,
similar parsing tools are used to deduce statistics from
the output of simulation runs.

Figure 4.  Myrinet 2d Torus Topology

4. Parallel code algorithm

Accurate characterization of network performance is a
complex task.  Simple numbers such as minimum
latency or maximum bandwidth are not sufficient
metrics to enable cross-technology comparisons.  We
augment these basic numbers with the results from the
computational core algorithm of real parallel codes used
at Sandia.

The code mesh simulates a computational kernel from
a two-dimensional finite element calculation.  This class
of structured grid codes is very common among the
large-scale calculations being performed today at the
laboratories. The processors are laid out in a virtual two-
dimensional mesh, and each processor will communicate
with its immediate neighbors in both the x and y
directions.  The code performs a number of iterations of
computation and communication cycles, which
represents the explicit time stepping algorithm of the
real code as it solves a generalized partial differential
equation.
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D. RESULTS AND ANALYSIS

 Since the goal of our study is to identify potential
interconnects we explored the raw capacity of each
technology without considering the host overhead.  We
did, however, add the host overhead in our subsequent
experiments in order to evaluate its impact on the
overall performance of parallel applications.

1. Interconnect Performance

Message latency

The data in Table 1 show the average time for a
message to pass through the respective network, along
with the standard deviation of the measurements and the
maximum and minimum times.

Table 1.  Latency simulation results from mesh algorithm.  Size in bytes, all
other fields in µs.

Size
Avici

Min                  Avg                  Max                    σ2

32 1.38 2.57 5.28 0.87
64 1.65 3.27 7.11 1.10

128 2.76 5.34 9.72 1.75
256 4.86 9.18 17.37 3.02
512 9.09 16.97 30.93 5.44

1024 17.49 32.56 55.95 10.25
2048 22.20 59.20 112.59 20.21

Size
Myrinet

Min                   Avg                   Max                  σ2

32 0.58 1.57 5.74 0.90
64 0.78 2.23 9.85 1.44

128 1.18 3.74 17.58 2.54
256 1.98 7.85 55.75 7.07
512 3.58 16.73 226.71 18.83

1024 6.78 36.54 441.90 43.75
2048 13.18 75.89 905.86 906.96

Up to a message size of 256 bytes, the Myrinet
network delivers average latencies about 1µs lower than
does the Avici Ethernet. This is due to the latency
introduced in the Avici switch fabric, which we measure
to be the same amount.  Myrinet switches add about 300
ns per hop, with an average of 3 hops per route in an 8x4
two-dimensional torus, to give the 1 us latency to transit
Myrinet switch.

In the large message extreme, a 2-kB packet takes, on
average, 59 µs to traverse the Avici Ethernet network,
versus 76 µs to traverse the Myrinet network.  However,
the worst case transfer time is a factor of eight greater
for the Myrinet.  Note that these are not raw transfer
times, but the result of the interactions with transfers
between other pairs of nodes on the network.  This leads
us to conclude that the effect is from the blocking
induced by obstructing messages in the network traffic.
The Avici switch is designed to be non-blocking with its
extreme path redundancy and large fabric speedup.
Therefore, we conclude that the smaller difference

between its maximum and average message transfer time
is due to output port contention, i.e., when multiple
messages are waiting to enter a single destination host.

Completion time

The second data analysis we perform takes into
account more of the details of the algorithm.  Fig. 5
shows plots of the results at a 256-byte message size, for
both technologies.

(a) Avici GigE

(b) Myrinet

Figure 5. Mesh completion times 256-byte messages

Each plot shows, for each iteration and processor, the
time when that processor completed that iteration.  The
unlabeled vertical axis is the iteration number of the
algorithm, from 1 to 10.  The horizontal axis is the
global time, in microseconds, and varies from plot to
plot, as the completion times are quite different with
respect to both message size and to network technology.

Each integral band of y-axis is broken up into 256
points, one for each processor.  A dot is placed in a
processor's strip in a given iteration number at the time
that processor has sent and received all messages
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necessary to proceed with the calculation of that
timestep.

One thing to notice in the plots is that, within each
iteration, some processors always complete much earlier
than others.  For the mesh case, these are usually the
ones on the corner that have fewer neighbors and thus
fewer messages to exchange.  There are also apparent
stripes in the iteration bunches reflecting discrepancies
in transfer-time between topologically nearby and
distant mesh neighbors

At the relatively small 256-byte message size shown
in Fig. 5, the iteration bunches are well separated from
each other as most of the time to completion of each
iteration is taken up by computation time, represented in
our simulation by a sleep of 10 µs.  An ideal network,
that used no time to transfer messages, would show
perfectly vertical lines at each of the iterations, with the
last line (between 9 and 10) at 90 µs.  Anything more
than 90 µs is the effect of communication delay.

 The plots for the rest of the studied ranges of message
sizes are not shown.  From the Avici results, we observe
that the total time to completion gradually increases,
from 140 µs for 32-byte messages, to 900 µs for 2-kB
messages. We also note that each iteration-bunch is
becoming more separated into individual stripes, with
the edge processors finishing progressively earlier than
the bulk in the center (Fig. 6).

In the Myrinet network case, the iteration groups are
fuzzier. By comparing Fig. 5 and Fig. 6, we observe that
the fuzziness increases with increasing message size,
which is a direct result of the progressively larger
variance in communication times listed in Table 1.  At
large message sizes, the discrepancy in transfer-time for
both topologically nearby and distant neighbors are
greater, because messages sent through the network are
subject to more potential points of blocking.  Total time
to completion for these simulations are the same as for
the Avici at small message sizes, up to about three times
longer in the large message case.

2. Performance with host overhead

In this study, we ran the same mesh simulations,
adding the experimentally extrapolated host overhead
(Section C.1) at the sender and the receiver.  We plot the
completion-times of these runs as a function of message
size and compare them with those obtained from the
network-only runs (Fig. 7).  As shown, while the Avici
hardware demonstrated better completion-times than
Myrinet due to its non-blocking architecture, it loses the
advantage when the host overhead was taken into
account.  In fact, it fared worse than the Myrinet
solution because of the approximately 10% higher
overhead measured in the Gigabit ethernet hosts (Fig. 3).

This clearly indicates that we are bottlenecked at the
compute nodes, and not the network fabric.  Fig. 8 plots
the per processor mesh completion-times for 2-kB
messages as in Fig. 6, but with host overhead.  It is
interesting to note that the completion-times spreads of
the iterations are smaller in comparison to those in Fig.
6, especially in the case of Myrinet.  Obviously, the
presence of large host overhead has reduced jitter within
the network fabric.  The reason for this phenomenon is
not clear and is currently under investigation.

(a) Avici

(b) Myrinet

Figure 6.  Mesh completion times, 2048-byte message size

Figure 7. Mesh completion times verses message sizes, with and without
software overhead
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(a) Avici

(b) Myrinet

Figure 8.  Mesh completion time with host overhead, 2048-byte messages

Many cluster computing practitioners have noticed
that software overhead is a barrier to increasing the
performance of message-passing parallel programs, and
“Operating System bypass” schemes have thus become a
topic of recent interest [10, 11].  These schemes involve
user memory mapped network interfaces and zero-copy
transfers within the message passing primitives.  To
predict the beneficial effects of research in this area, our
next set of experiments explores the performance
characteristics with progressively reduced host
overhead.  In Fig. 9 we plot completion times of the
mesh algorithm for many message sizes, as the host
overhead is reduced from its current experimentally
derived value (normalized to 1.0) down to no overhead
at all.  For sufficiently small messages (under 128
bytes), the realizable performance gain is strictly
proportional to the host overhead and the effect of either
hardware interconnect technology is not evident.

At large message sizes, however, there exists a point
in the curve for each message size where improvements
in host overhead can no longer reduce the mesh

completion time, indicating the shift of performance
bottleneck from the host to the network.  For Myrinet,
these points are roughly at 5% of overhead for 256-byte
messages, 10% for 512, 20% for 1024, and 33% for
2048.  In the Avici case, the larger messages also shift
the responsibility to the network as the host overhead
improves, although at a later stage.  For example, the
inflection point for the 2048-byte message did not occur
until its host overhead has dropped to 15% of its current
value, as compared to 33 % in the Myrinet case.  In
addition, we note that, even after the inflection points,
the completion times continued to improve, although at
a much slower rate.

(a)  Avici

(b)  Myrinet

Figure 9.  Message completion times as a function of software overhead

In summary, our results demonstrate that the relatively
large host overhead in cluster computing can offset the
performance advantages of more capable network
technologies.  However, significant progress has already
been made in the design and implementation of OS-
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bypass mechanism [12].  In fact, Myricom reported a 13-
21 µs of one-way latencies transferring small MPI
messages over GM; GM is Myricom’s implementation
of OS-bypass available on free BSD, LINUX, and
Solaris [13].  These progresses will soon approach the
point where Myrinet would become the performance
bottleneck in the 256-node configuration we simulated.
Therefore, proper selection of an interconnection
network must consider the network architecture such
that it can balance the bandwidth requirements of future
parallel systems.

E. CONCLUSIONS

We have presented the results of the analysis for two
different network architectures for parallel commodity
computing.  It is important to choose the network
correctly because it can have a large impact on all but
the most embarrassingly parallel applications, and may
be the source of up to half of the cost of the entire
machine.  Important performance factors to consider are
bandwidth, latency, jitter, routing, and distribution of
blocking in the fabric.

Since our network design goal is to facilitate the
performance of real applications, we evaluated the
performance of the two network technologies when
applied to specific application cores important to our
users.  In this context we analyzed timing results
gathered from the networks and drew conclusions from
our knowledge of the network about its effect on
performance of the application. Our simulation results
show that Myrinet behaves well in the absence of
congestion.  Under heavy load, its latency suffers due to
blocking in the fabric.  Also Myrinet is limited from
scaling too far because of cable length limitations.
Future development by Myricom may alleviate this
constraint, although the cost to latency or budget is
unknown.  The simplicity in the Myrinet switch results
in low per-connection cost; however, the non-
commodity network adapter cards keep the host side of
the connection expensive.

The Avici terabit switch router has an internal fabric
with some similarities to Myrinet, in that it uses source
routing and non-buffering switches.  Unlike Myrinet, it
achieves non-blocking via extremely high path-
redundancy, high-bandwidth internal links and per-
connection buffer management and scheduling.  The line
cards present standard GigE connections to hosts, in
keeping with the current commodity favorite.  Our
simulations showed that the Avici switch outperformed
Myrinet on large messages (256 bytes and above), and
was comparable in the small-message regime. Avici is
only slightly cheaper than Myrinet for the 256-node
topology we simulated, but would be increasingly more

cost effective as the cluster size increases.  Moreover,
we expect reduction in cost with further penetration of
Gigabit Ethernet into the market.

Unfortunately, today’s commodity Operating Systems
and network interface cards incur too much latency,
offsetting any performance advantages that might come
from a more capable network technology.  The most
crucial factors in building high performance, distributed
memory, parallel systems, therefore, are not only the
selection of a capable network technology, but also
methods of reducing host overhead such as an Operating
System bypass scheme.  As research improves the state
of the art in this area, the selection of network hardware
will become more important.  We hope to see end-to-end
one-way latencies on the order of 10 µs in the near
future, which corresponds to a tenfold reduction
compared to the current state of affairs.  Our results
show that, in this future scenario, the Avici fabric should
have sufficient network bandwidth to handle the load
offered by our parallel codes.  On the other hand, a
network infrastructure built on Myrinet technology
could suffer saturation for message sizes greater than
512 bytes.
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