
Abstract-- The idea of cluster computing is to aggregate
machine room full of relatively cheap hardware, connected
with some sort of network, and apply the combined power of
the individual machines on a single calculation. Because this
architecture consists of distributed memory, parallel processes
communicate using a message-passing paradigm. High-end
cluster users typically rely on special purpose hardware such
as Myrinet [1], HiPPI [2], or ServerNet [3] for their message
passing infrastructures, thereby losing the cost benefit offered
by the commodity market. Riding on the wave of Ethernet
popularity, Gigabit Ethernet [4] is fast becoming a commodity
item. We evaluated its performance by simulating core
algorithms from real parallel applications. We compared raw
performance figures such as bandwidth and latency, as well as
more complex parameters such as jitter, routing, and points of
congestion in the fabric against similar studies conducted on
Avici and Myrinet technology.

Index terms—Simulation, Gigabit Ethernet, Myrinet, topology

A. INTRODUCTION

The number of enthusiasts of commodity high-performance
computing platforms is growing following the general demise
of the massively parallel processor (MPP) manufacturers.
Sandia National Laboratories, a United States Department of
Energy research facility, has also joined the fray because it
can no longer satisfy the thirst for FLOPS by buying
monolithic multi-million dollar machines, as there is not
sufficient market demand to keep vendors in business.

The hardware employed in a cluster is generally the most
readily available in the volume personal computing market, so
as to leverage the cost advantages of buying commodity
hardware. Unfortunately, a critical piece of the hardware for
cluster computing, namely the highspeed interconnect, is
completely irrelevant for the mass market. High-end cluster
users, therefore, have to rely on special purpose hardware
such as Myrinet, HiPPI, or ServerNet for their message
passing infrastructures, thus losing the cost benefit offered by
the volume market.

The purpose of this study is to identify a cost-effective
alternative to traditional interconnects. Riding on the wave of
Ethernet popularity, Gigabit Ethernet is fast becoming a
commodity item. In addition to bandwidth enhancement, the
full-duplex mode of Gigabit Ethernet [4] allows switched
access at full channel capacity without the limitation of
CSMA/CD. Therefore, we believe, given a scalable switching

Work supported by the US Department of Energy under contract DE-AC04-
94AL85000

architecture, Gigabit Ethernet can be a cost-effective
interconnection solution for cluster computing.

The remainder of this paper discusses the simulation results
of a conventional Gigabit-Ethernet switch. We describe the
methods we used, which involve a mix of “artificial” basic
tests and simulations of core algorithms from real parallel
applications. Results are compared with two identical studies
conducted on the Avici Terabit Switch Router and the Myrinet
solution. We then tally the positive and negative aspects of
each technology.

B. INTERCONNECT TECHNOLOGIES

 The following subsections describe the network fabrics we
considered for the three simulation studies. In each subsection
we calculate the current pricing for a prototypical 256-node
cluster, a size which is feasible for most high-end cluster
builders.

1. Conventional Gigabit Ethernet (GigE) Switch
Conventional GigE switches use designs based on a

backplane bus or crossbar. The largest non-blocking switch
available today supports only 64 nodes and therefore,
cascading is required to build a cluster beyond that size.
These switches use the spanning tree algorithm to calculate a
loop-free tree that has only a single path for each destination,
using the redundant paths as hot stand-by links [5]. This
precludes the use of a mesh topology, making the network
vulnerable to bottlenecks due to output port contention.
Therefore we believe that interconnection fabrics using
conventional GigE switches are limited to building small
parallel systems of no more than 256 nodes.

Nevertheless, we decided to conduct a simulation study of a
256-node cluster in order to evaluate the effects of ethernet's
packet framing, inter-frame gap, maximum and minimum
packet size, and store-and-forward switching mechanism on
the performance of parallel applications. Network cards for
Gigabit Ethernet are approximately $700, and 64-port
switches can be found for $50K. Including 20 extra fiber
cables for inter-switch trunking, this configuration cost 256 x
$700 + 5 x $50,000 + (256 + 4 x 6) x $75 = $450K.

2. Myrinet
Myricom’s Myrinet is a cost-effective, special purpose

communication and switching technology. It interconnects
hosts and switches using 1.28 Gb/s full-duplex links. The
Myrinet PCI host adapter can be programmed to interact
directly with the host processors for low-latency
communications and the network to send, receive, and buffer
packets.

Helen Chen, Pete Wyckoff, and Katie Moor

Cost/Performance Evaluation of Gigabit Ethernet and Myrinet as Cluster Interconnect

Sandia National Laboratories
PO Box 969, MS9011

7011 East Avenue, Livermore, CA 94550

All Myrinet packets carry a source-based routing header to
provide intermediate switches with forwarding directions.
The current Myrinet switch is a 16-port crossbar. These ports
can be used to interconnect either switches or processors,
allowing arbitrary network topologies. However, the severe
cable length restriction of 35 feet impedes the realization of
complex topologies. Thus, for our large-scale simulations, we
chose a two dimensional torus, with dual interswitch
connections, as the best tradeoff in terms of area and cost.
Myrinet sells a network interface card for $1700, 16-port
switches for $5000, and cables for $200. For the topology
described above, the total cost for a 256-node cluster is 256 x
$1700 + 32 x $5000 + 12 x 32 x $200 = $670K.

3. Avici Terabit Switch Router [6]
The Avici switch router uses two direct-connect networks

[7] as its switching fabric to achieve high performance,
scalability, and robustness. The dual fabric connects
switching nodes (or line cards) using twelve 20 Gb/s full-
duplex links to form two three-dimensional toroidal meshes.
As such, the Avici switch router can be incrementally
expanded to include up to 1120 cards without blocking. At 16
GigE ports per card, this configuration can interconnect up to
17,920 compute nodes.

Similar to Myrinet, the Avici switch uses wormhole routing
inside the fabric to achieve low latency. Unlike Myrinet,
however, rather than buffering the entire message inside the
network (causing path blocking for the duration of the
message), the Avici router segments its messages into 72-byte
scheduling units (flits) and uses credit-based flow control to
prevent flit loss. The Avici router eliminates the blocking
characteristics of wormhole routing by using per-connection
buffer management and over-provisioned fabric links.
Because of the huge speed mismatch between Gigabit
Ethernet and the fabric link (1:20), the Avici router stores
each incoming Gigabit Ethernet packet before forwarding to
prevent buffer underrun. Gigabit Ethernet cards cost around
$700 each, and fiber cables $75 each. Avici projects a 256-
port switch for $350,000. The total cost for a 256-node
cluster is 256 x ($700 + $75) + $350,000 = $550K.

C. SIMULATION METHODOLOGY

Due to time constraints, we adapted existing simulation
packages to capture the important characteristics of each
technology, such as its link level protocol and switch
architecture. Considering that these characteristics are unique
to the particular technologies, we were not concerned with the
effects due to differences in implementation. Instead, we
ensured the fidelity of our simulation results by extending the
packages to use the same set of parallel algorithms to generate
traffic. We also coded an identical interface layer to handle
details of packet transmission and reception. We used
OPNET to simulate a 256-node cluster connected by
conventional GigE switches [8]. These OPNET models
illustrate the simulation methodology we adopted on all three
technologies. We will compare the OPNET results with

similar studies performed on the Avici and the Myrinet
interconnects in a later section.

1. The OPNET Models
Using OPNET’s network editor, we composed our

computational cluster using components such as switches,
nodes, and links. The interconnection network consisted of
five conventional Gigabit Ethernet switches, 256 compute
nodes, and full-duplex point-to-point links to interconnect
them. We populated four switches each with 64 compute
nodes, which were in turn connected via a fifth switch. We
chose a star topology because it offered the lowest hop count
between the most distant nodes in the network.

At the next lower level, we used OPNET’s node editor to
construct our compute and switch nodes. While the switch
nodes were composed entirely of existing OPNET models, we
wrote the traffic generators (i.e. parallel applications) and an
Ethernet Transport Adaptation Layer (ETAL) to construct our
compute nodes (Fig. 1).

Figure 1. Compute Node model

Figure 2. State diagram for the mesh algorithm

Our parallel application model contained a state transition
diagram (Fig. 2) that represented the parallel code. Each of
the 256 nodes in the system ran the same state machine, which
transitioned between sending, receiving, and computing states.

We will defer the description of our parallel applications until
the “Parallel Code Algorithms” subsection.

As mentioned earlier, the ETAL module provided
application programmers with a uniform interface to the
network; it handled the details of packet transmission and
reception, where packets were segmented and reassembled
when necessary in order to fit the Ethernet MTU (1500-byte)
limitation. ETAL segmented the application’s messages into
Ethernet packets using the following OPNET kernel routines:
Op_sar_segbuf_create () allocated a segmentation-buffer;
Op_sar_segbuf_pk_insert () tagged and inserted a message to
be segmented into the pre-allocated segmentation-buffer;
Op_sar_srcbuf_seg_remove () subsequently removed a
segment from the buffer suitable for transmission inside an
Ethernet frame. At the receiving end, the ETAL reassembled
the original message from its tagged Ethernet fragments. We
created a reassembly-buffer using op_sar_rsmbuf_create ().
We then inserted incoming Ethernet packets into the pre-
allocated reassembly-buffer using op_sar_rsmbuf_insert ().
Finally, we detected and removed a completely reassembled
messages from the reassembly-buffer using
op_sar_rsmbuf_pk_count () and op_sar_rsmbuf_pk_remove ()
respectively.

The ETAL module also kept track of in-flight messages and
their creation time, which we used to generate performance
statistics. We logged statistics using identical “printf” formats
for all three simulation studies, such that we could use the
same set of parsing tools to deduce and plot statistics from the
output of the OPNET as well as the Avici and Myrinet
simulation runs.

2. Parallel Code Algorithms
Accurate characterization of network performance is a

complex task. Simple numbers such as minimum latency or
maximum bandwidth are not sufficient metrics to enable
cross-technology comparisons. We augmented these basic
numbers with results from computational core algorithms from
real parallel codes.

A code entitled token_pass was our simplest test. It
arranged the participating processors in a virtual loop that
iterated the passing of a “token” around the loop a certain
number of times. Each processor awaited a message from its
neighbor to the left, then delayed a bit to simulate processing
time, before sending a message to its neighbor on the right.
By increasing the size of the token, we can perform accurate
bandwidth measurements. By setting the payload to zero, we
can find the minimum message latency. Since only two
processors at a time were ever involved in a communication,
there were no contention effects to filter out from the results.

The code mesh simulated a computational kernel from a
two-dimensional finite element calculation. This class of
structured grid codes is very common among the large-scale
calculations being performed today at the laboratories. The
processors are laid out in a virtual two-dimensional mesh,
where each processor communicates with its immediate
neighbors in both the x and y directions. The code performed
a number of iterations of computation and communication

cycles, which represented the real code's explicit time stepping
algorithm as it solved a generalized partial differential
equation.

3. Host Overhead
End-to-end latency in passing a point-to-point message

includes: the processing overhead of some message passing
interface (e.g., MPI), the processing of the operating system’s
transport/network protocols and their associated memory
copies, the network interface card’s medium access overhead,
and the network’s transmission delay. We combined all but
the network transmission delay into the host overhead
abstraction. We wrote an MPI-based “ping-pong” program
that measures one-way latency of various length messages.
One node starts its timer, and sends a message to the other
node, then receives a copy of the same message from the other
node, and stops its timer. The recorded value (i.e. the one-
way delay) is half of this round-trip timing period, and to
ensure accuracy, 200 trials were averaged together.

Our simulator extrapolated one-way latency from the
linearly fitted plots of the experimental measurements (Fig. 3).
Software overhead was calculated by subtracting the
transmission delay from the derived one-way latency. We
further divided the results by two, to account for processing
delay incurred at both the sender and the receiver, and these
values were plotted in Fig. 4.

Figure 3. One way latency

Figure 4. Host overhead (µs)

80

100

120

140

160

180

200

220

0 500 1000 1500 2000

on
e-

w
ay

 la
te

nc
y

(u
s)

message size (bytes)

gigabit ethernet
myrinet

50

60

70

80

90

100

110

0 500 1000 1500 2000

ho
st

 o
ve

rh
ea

d
(u

s)

message size (bytes)

gigabit ethernet
myrinet

D. RESULTS

Since the goal of our study is to identify potential
interconnect technologies, we did not consider host overhead
in the first set of our simulations. With the knowledge of the
network potential in hand, we then included the host overhead
to evaluate its impact on the overall performance of parallel
applications.

1. Network Performance
Token_pass

We ran the token_pass code with a one-byte payload to
determine the minimum message latency between neighboring
nodes in a 256-member virtual ring for all three technologies.
As mentioned earlier, since only two processors at a time were
involved in communication, there were no contention effects.
We compiled our results and listed the minimum, maximum,
average, and standard deviation for each study in Table 1.

Min Avg Max σ2

Myrinet 0.388 0.427 0.869 0.093
Avici GigE 1.380 1.386 1.530 0.024
Conventional GigE 1.564 1.595 3.532 0.244
Table 1. Minimum message latency results, in µs.

As shown, the Myrinet technology delivered very good
latency. The Avici and Conventional GigE latency suffered
because of the store-and-then-forward mechanism
implemented at the switch and host ingress points. Jitter, the
variation in latency, is purely a function of network topology
in the absence of congestion; it reflects the difference in
distance between token_pass neighbors in the network. The
conventional GigE topology faired worst in this category
because the most distant neighbors have three additional store-
and-forward delays in their communication path.

Using token_pass and a 15-MB message, we measured
throughput for each technology to verify the correctness of our
simulation code. We chose this message size because it was
large enough to fill the end-to-end communication pipe, a
criterion necessary for throughput measurements. The end-to-
end communication pipe is the product of the theoretical
bandwidth and the round-trip time. Our simulation throughput
values are within half a percent of their corresponding
theoretical bandwidth.

Mesh
The data in Table 2 lists the average time for a message to

pass through the respective network, along with the standard
deviation of the measurements and the maximum and
minimum times. By comparing the average and maximum
values for each technology, we observed that the maximum
message-transfer-time of large messages could be up to an
order of magnitude more than the average in the case of
Myrinet and conventional GigE. This is due to the presence of
link contention in those technologies. Only with the Avici
switch were the numbers more comparable. These maximum
numbers tend to pull up the averages.

In order to visualize the effects of link contention to the
application’s overall performance, we plotted, in Fig. 5, the
mesh code completion times for messages ranging 32, 64,
128, 256, 512, 1024, and 2048 bytes, for all three
technologies. Looking at the Avici results, we observed that
the total time to completion gradually increased, from 140 µs
for 32-byte messages, to 900 µs at 2-kilobyte messages. In the
Myrinet case, total time to completion for these simulations
was the same as for Avici at small message sizes, to about
three times longer in the large message case. The results for
the conventional GigE cascade of switches featured
completion times, for small messages, that were consistently
three to six times larger than both the Avici and Myrinet.
With messages larger than 1-kilobyte, however, we observed
better performance than Myrinet. It seemed that the
scheduling algorithm in the conventional GigE switch could
handle congestion better than Myrinet’s wormhole routing
mechanism.

Size
Avici

Min Avg Max σ2

32 1.38 2.57 5.28 0.87
64 1.65 3.27 7.11 1.10

128 2.76 5.34 9.72 1.75
256 4.86 9.18 17.37 3.02
512 9.09 16.97 30.93 5.44

1024 17.49 32.56 55.95 10.25
2048 22.20 59.20 112.59 20.21

Size
Myrinet

Min Avg Max σ2

32 0.58 1.57 5.74 0.90
64 0.78 2.23 9.85 1.44

128 1.18 3.74 17.58 2.54
256 1.98 7.85 55.75 7.07
512 3.58 16.73 226.71 18.83

1024 6.78 36.54 441.90 43.75
2048 13.18 75.89 906.86 93.33

Size
Ethernet

Min Avg Max σ2

32 1.56 53.77 80.64 11.30
64 1.85 53.86 80.55 11.37

128 2.88 53.47 81.19 12.81
256 4.92 50.85 85.45 13.67
512 9.02 57.28 118.22 27.03

1024 17.21 85.60 254.26 68.44
2048 29.52 151.92 378.46 94.66

Table 2. Latency simulation results from mesh algorithm.
Size in bytes, all other fields in µs.

In summary, the average message latency delivered by the
three network technologies is affected both by available
bandwidth and the presence of bottlenecks. Fabric blocking is
bad for parallel algorithms in that it increases the maximum
latency seen by any particular message. Since all messages
must eventually reach their destination before the code can

complete, that maximum latency value is crucial to the wall-
clock performance of a code. The Avici switch was seen to
have the smallest amount of fabric blocking, while the
Myrinet and conventional GigE fabric offered potential
blocking points at every switch along the path of a message.

Figure 5. Mesh completion times verses message sizes, with
and without software overhead

2. Performance with Host Overhead
In this study, we ran the same mesh simulations, adding host

overhead. We plotted the completion times of these runs in
Fig. 5 as a function of message size and compared them with
those obtained from the network-only runs. As shown, while
the Avici hardware demonstrated better completion times than
Myrinet due to its non-blocking architecture, it lost its
advantage when the host overhead was taken into account. In
fact, it fared worse than Myrinet due to the approximately
10% higher overhead measured in the Gigabit Ethernet hosts,
which clearly indicated that the bottleneck was at the compute
nodes, and not in the network. With identical host overhead
(same GigE adapter and TCP/IP processing [8]), the
performance degradation in conventional GigE paralleled that
in the Avici system.

Many cluster computing practitioners have noticed that host
overhead is a barrier to increasing the performance of
message-passing parallel programs, and “operating system
bypass” schemes have thus become a topic of recent interest.
To predict the beneficial effects of research in this area, our
next set of experiments explored the performance
characteristics of the three interconnects with progressively
reduced host overhead.

In Fig. 6 we plotted the completion times of the mesh
algorithm for many message sizes, as the host overhead was
reduced from its current experimentally determined value
(normalized to 1.0) down to no overhead at all. With the
exception of the conventional GigE fabric, for sufficiently
small messages (under 128 bytes), the realizable performance
gain was strictly proportional to the host overhead and the
effect of the network hardware was not evident. At large
message sizes, however, there existed a point in the curve for
each message size where improvements in host overhead can

Figure 6. Mesh completion time as a function of software
overhead : (a) Avici GigE, (b) Myrinet, and (c) Conventional
GigE

no longer reduce the mesh completion time, because the
performance bottleneck had shifted from the host to the
network. For Myrinet, these points were roughly at 5% of
overhead for 256-byte messages, 10% for 512, 20% for 1024,
and 33% for 2048. In the Avici case, the larger messages also
shifted the responsibility to the network as the host overhead
improved, but not until it was dropped to 15% of its current
value for the largest (2048-byte) messages. In addition, we

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000

co
m

pl
et

io
n

tim
es

 (
us

)

message size (bytes)

conventional gige w/ overhead
avici gige w/ overhead

myrinet w/ overhead
myrinet w/o overhead

conventional gige w/o overhead
avici gige w/o overhead

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000

ho
st

 o
ve

rh
ea

d

mesh completion time (us)

32
64

128
256
512

1024
2048

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000

ho
st

 o
ve

rh
ea

d

mesh completion time (us)

32
64

128
256
512

1024
2048

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000

ho
st

 o
ve

rh
ea

d

mesh completion time (us)

32
64

128
256
512

1024
2048

noted that even at these points, the completion times
continued to improve, although at a much slower rate.

In the case of conventional GigE, the curves indicate that,
regardless of message sizes, the network always bottlenecks
when the host overhead had been reduced to 15% of its
current value. We believe this was caused by the severe
interswitch bottleneck coupled with multiple store-and-
forwards incurred in the cascaded switch topology (see the
TECHNOLOGY section). Again, we observed that, at 2048
bytes and sufficiently low host overhead, conventional GigE
demonstrated better performance than Myrinet, indicating
Ethernet protocol, with its MTU limitation, allows fairer
scheduling during congestion than Myrinet’s wormhole
routing algorithm. Since the slowest parallel process
dominates the parallel code completion time, unfair sharing of
limited network bandwidth seemed to have adverse effects on
Myrinet’s performance.

E. CONCLUSIONS

We have presented the results of the analysis for three
different major network architectures for parallel commodity
computing. It is important to choose the network correctly
because it can have a large impact on all but the most
embarrassingly parallel applications, and may be the source of
up to half of the cost of the entire machine. Important factors
to consider are raw performance figures such as bandwidth
and latency, as well as more complex parameters such as
jitter, routing, multicast support, and distribution of blocking
in the fabric.

Since our network design goal is to facilitate the
performance of real applications, we evaluated the
performance of the three network technologies when applied
to specific application cores important to our users. In this
context we analyzed timing results gathered from the networks
and drew conclusions from our knowledge of the network
about its effect on performance of the application.

Our simulation results show that Myrinet behaved well in
the absence of congestion. Under heavy load, its latency
suffered due to blocking in wormhole routing. Also Myrinet
is limited from scaling too far due to the short cable length
problem. Future development by Myricom may alleviate this
constraint, although the cost to latency or budgets is unknown.
The simplicity in the Myrinet switch results in low per-
connection cost; however, the non-commodity network
adapter cards keep the host side of the connection expensive.

Conventional Gigabit Ethernet switches currently do not
scale to support more than 64 GigE ports, which leads to the
introduction of a topology that involves cascading multiple
stages of small switches. The presence of multiple hops in a
path between hosts, and the store-and-forward nature of
legacy Ethernet leads to longer message delays. Bandwidth
bottlenecks at the topmost switch in the cascade may also be a
problem.

The Avici terabit switch router has an internal fabric, which
is quite similar to Myrinet, in that it is a very high-bandwidth
three-dimensional torus using source routing and simple non-
buffering switches. The line cards present standard GigE
connections to hosts, though, in keeping with the current
commodity favorite. Our simulations showed that the Avici
switch outperformed Myrinet on messages that were 256 bytes
and above, and was comparable in the small-message regime.
From a cost standpoint, Avici is only slightly cheaper than
Myrinet for a comparable topology, but is expected to reduce
in price with further penetration of Gigabit Ethernet into the
market.

Unfortunately, today’s commodity Operating Systems and
network interface cards incur too much latency, offsetting any
performance advantages that might come from a more capable
network. The most crucial factors in building high
performance, distributed memory, parallel systems, therefore,
are: the use of an Operating System bypass scheme to reach
the network directly, and of pipelined network card design.
As research improves in this area, the selection of network
hardware will become more important. We hope to see end-
to-end one-way latencies on the order of 10 µs in the near
term, which corresponds to a tenfold reduction compared to
the current state of affairs. Fig. 5 shows that, in this future
scenario, the Avici fabric has sufficient network bandwidth to
handle the load offered by our parallel codes. On the other
hand, a network infrastructure built on Myrinet and
conventional GigE technology will suffer saturation when
message sizes are 512 bytes and larger. We conclude that
when making network selections, one should take into
consideration the performance requirements necessary to
balance the demands of future, low latency compute nodes.

REFERENCES

[1] http://www.myri.com/myrinet/|overview/index.html, 1999
[2] http://www.hnf.org/, 1998
[3] http://www.tandem.com/pres_rel/sandnpl.htm, 1999
[4] R. Seifert, “Gigabit Ethernet: technology and applications

for high speed LANs,” Addison-Wesley, pp. 141-280,
1998

[5] G. Held, “Ethernet networks: design, implementation,
operation, management,” John Wiley & Sons, Inc., pp.
78—95, 1998

[6] W. Dally, “Scalable Switching Fabrics for Internet
Routers,” Computer Systems Laboratory, Stanford
University and Avici Systems, July 1999.

[7] J. Duato, S. Yalmanchili, and L. Ni, “Interconnection
Networks: an Engineering Approach,” IEEE Computer
Society Press, pp. 11—16, 1997

[8] http://www.mil3.com/products/| |modeler/home.html, 1999

