
Can User Level Protocols Take Advantage of Multi-CPU NICs?

Piyush Shivam
Dept. of Comp. & Info. Sci.
The Ohio State University

Columbus, OH 43210
shivam@cis.ohio-state.edu

Pete Wyckoff
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, OH 43212

pw@osc.edu

Dhabaleswar Panda
Dept. of Comp. & Info. Sci.
The Ohio State University

Columbus, OH 43210
panda@cis.ohio-state.edu

Longer version of paper in IPDPS02. Revised 02 Feb 02

Abstract
Modern high speed interconnects such as Myrinet and

Gigabit Ethernet have shifted the bottleneck in communi-
cation from the interconnect to the messaging software at
the sending and receiving ends. The development of user-
level protocols and their implementations on smart and pro-
grammable network interface cards (NICs) have been alle-
viating this communication bottleneck. Most of the user-
level protocols developed so far have been based on single-
CPU NICs. One of the more popular current generation
Gigabit Ethernet NICs includes two CPUs, though. This
raises an open challenge whether performance of user-level
protocols can be improved by taking advantage of a multi-
CPU NIC. In this paper, we analyze the intrinsic issues as-
sociated with such a challenge and explore different par-
allelization and pipelining schemes to enhance the perfor-
mance of our earlier developed EMP protocol for single-
CPU Alteon NICs. Four different strategies are proposed
and implemented on our testbed. Performance evaluation
results indicate that parallelizing the receive path of the
protocol can deliver 964 Mbps of bandwidth, close to the
maximum achievable on Gigabit Ethernet. This scheme also
delivers up to 8% improvement in latency for a range of
message sizes. Parallelizing the send path leads to 17%
improvement in bidirectional bandwidth. To the best of
our knowledge, this is the first research in the literature
to exploit the capabilities of multi-CPU NICs to improve
the performance of user-level protocols. Results of this re-
search demonstrate significant potential to design scalable
and high performance clusters with Gigabit Ethernet.

Keywords: Gigabit ethernet, message passing, OS by-
pass, user-level network protocol, parallel protocol design

1. Introduction

High-performance computing on a cluster of worksta-
tions requires that the communication latency be as small

as possible.1 The communication latency is primarily com-
posed of two components: time spent in processing the mes-
sage and the network latency (time on wire). Modern high
speed interconnects such as Myrinet [2] and Gigabit Ether-
net [11] have shifted the bottleneck in communication from
the interconnect to the messaging software at the sending
and receiving ends. In earlier generation protocols, the pro-
cessing of the messages by the kernel used to cause multiple
copies and many context switches. Thus, the communica-
tion latency was quite high. Over the years, researchers and
developers of communication subsystems detected this bot-
tleneck and this led to the development of user-level net-
work protocols. Examples of some of the user-level proto-
cols are: FM [7] for Myrinet, U-Net [14] for ATM and Fast
Ethernet, GM [2] for Myrinet, our recent work on EMP [9]
for Gigabit Ethernet, etc.

During the last few years, the designs and developments
related to user-level protocols have been brought into an in-
dustry standard in terms of theVirtual Interface Architec-
ture (VIA) [13]. Many hardware, software, and firmware
implementations of VIA are currently available. Examples
include M-VIA [4], GigaNet VIA [10], and FirmVIA [1].
An extension to the VIA interface is already included in the
latestInfiniBand Architecture(IBA) [3] as the Verbs layer.

It is to be noted that the success of user-level protocols,
VIA, and Verbs layer of the IBA relies heavily on the perfor-
mance, programmability, and “intelligence” associated with
modern network interface cards (NICs). As NIC proces-
sors are becoming more powerful and NICs are built with
more memory, it is becoming easier to off-load significant
portions of communication protocol processing to the NIC
processor and thus, achieve improved communication per-
formance.

As processor technology is moving towards gigahertz
speeds and network technology is moving towards 10–30

1This research is supported by a grant from Sandia National Labs (con-
tract number 12652 dated 31 Aug 2000).



Gbits/sec [3] it is becoming increasingly important to ex-
ploit the capabilities of the NIC to achieve the best pos-
sible communication performance. In current generation
systems, the PCI bus serves as a fundamental limitation to
achieving better communication performance. This aspect
is being alleviated in the IBA standard where Host Chan-
nel Adapters (HCAs) (equivalent to NICs) will be directly
connected to the memory through the system bus. Thus, the
design of the NICs and their interfaces are getting increased
attention.

Most of the older and current generation NICs support
only one processor. Thus, to the best of our knowledge, all
user-level communication protocols including VIA imple-
mentations have been centered around single-CPU NICs.
One popular current generation NIC design is the two-CPU
core from Alteon [6] for Gigabit Ethernet. This leads to the
following interesting challenges:

1. Can user-level protocols be better implemented by tak-
ing advantage of a multi-CPU NIC?

2. What are alternative strategies for parallelizing and
pipelining of user-level protocols with a two-CPU
NIC, and what are the intrinsic issues?

3. How much performance benefit can be achieved with
such parallelization and pipelining?

In this paper, we analyze, design, implement, and eval-
uate a parallel version of the user-level protocol layer with
two-CPU Alteon NICs for Gigabit Ethernet. We enhance
theEthernet Message Passing(EMP) [9] protocol which we
have recently developed for Gigabit Ethernet using Alteon
NICs. EMP was developed by taking into account only one
of the two available CPUs in the NIC. To the best of our
knowledge, this paper documents the first attempt to par-
allelize user-level protocols on modern interconnects with
multi-CPU NICs.

In this paper, first we analyze the send and receive paths
of the EMP messaging layer to determine the costs associ-
ated with the basic steps. Next, we analyze the challenges
involved in parallelizing and/or pipelining user-level proto-
cols for the two-CPU Alteon NIC. This leads to four alter-
native enhancements: splitting up the send path only (SO),
splitting up the receive path only (RO), splitting both the
send and receive paths (SR), and assigning dedicated CPUs
for send and receive (DSR). We implement these strategies
on our cluster testbed with 933 MHz Intel PIII systems and
evaluate their performance benefits.

The best results were obtained with the RO scheme for
unidirectional traffic, giving a small message (10 bytes) la-
tency of 22.62 us and bandwidth of 964 Mbps. This is
compared to the base case latency of 24.31 us (a gain of
7.0%) and bandwidth of 840 Mbps. For large messages the
latency improvement was around 8.3%. For bidirectional

traffic the best results were achieved with the SO scheme
where the total bandwidth peaked at 1100 Mbps as com-
pared to 940 Mbps in the base case, a gain of 17%.

The paper is organized as follows. Section 2 provides
an overview of the multiprocessor support provided by the
Alteon NIC. Section 3 provides the overview of the EMP
protocol. Section 4 describes the new design challenges en-
countered for a NIC-based implementation of a parallelized
messaging layer. In Section 5, we enumerate the possible al-
ternatives for parallelizing the NIC-driven protocol. In Sec-
tion 6 we examine how best we can exploit the NIC hard-
ware capability for achieving parallelization and pipelining.
In Section 7, we evaluate the alternative strategies with re-
spect to their effectiveness while providing the results of our
experiments. Related work and conclusions are presented in
Sections 8 and 9, respectively.

2. Architectural overview of the Multi-CPU
NIC

Alteon Web Systems, now owned by Nortel Networks,
produced a Gigabit Ethernet network interface chipset
based around a general purpose embedded microprocessor
design which they called the Tigon2. It is novel because
most Ethernet chipsets are fixed designs, using a standard
descriptor-based host communication protocol. A fully pro-
grammable microprocessor design allows for much flexibil-
ity in the design of a communication system. This chipset
was sold on boards by Alteon, and also was used in board
designs by other companies, including Netgear and 3Com.
When we speak of the “Alteon NIC” later in the paper, it
is understood that all of the implementations which use this
chip are equivalent. Broadcom has a chip (5700) which im-
plements the follow-on technology, Tigon3, which should
be similar enough to allow use of our messaging environ-
ment on future gigabit ethernet hardware.

The Tigon chip is a 388-pin ASIC consisting of two
MIPS-like microprocessors running at 88 MHz, an inter-
nal memory bus with interface to external SRAM, a 64-bit,
66 MHz PCI interface, and an interface to an external MAC.
The chip also includes an instruction and data cache, and a
small amount of fast per-CPU “scratchpad” memory. The
instruction set used by the Tigon processors is essentially
MIPS level 2 (as in the R4000), without some instructions
which would go unused in a NIC application.

Hardware registers can be used by the processor cores
to control the operation of other systems on the Tigon, in-
cluding the PCI interface, a timer, two host DMA engines,
transmit and receive MAC FIFOs, and a DMA assist en-
gine. Our particular cards have 512 kB of external SRAM,
although implementations with more memory are available.
The NIC exports a 4 kB PCI address space, revealing to the
host: 1 kB of Tigon hardware registers, a fixed mapping



of the lowest 1 kB of SRAM (including event-generating
mailboxes), and a 2 kB memory “window” which can be
positioned by the host to map into any Section of the full
512 kB external SRAM.

The hardware provides a single semaphore which can be
used to synchronize the two CPUs. Each CPU has its own
register which it writes with any value to request owner-
ship of the semaphore, then must loop until a read from the
semaphore register is non-zero, indicating successful own-
ership. This is the only general locking mechanism; in par-
ticular, the memory system on the NIC does not support
locked bus cycles.

The Tigon2 has many features useful for implementing
event-driven execution (as opposed to interrupt-driven or
threaded, for example). Two new instructions were added to
facilitate fast event dispatch:pri selects the highest bit in
a word subject to a mask, andjoff jumps through a func-
tion table using that high bit. Each processor has a register
which includes bits for each event that a processor might
want to handle. These bits report hardware readiness, such
as an arriving frame from the network, or a buffer low wa-
termark condition. The event register also has bits which
software can use to define its own events for handling from
within the main dispatch loop.

3. Overview of the EMP Protocol

In this Section we provide an overview of the imple-
mentation of the EMP protocol [9]. We first provide an
overview of the basic steps. Next, we discuss these steps in
detail. Finally, we present a timing analysis of these steps
on a single-CPU NIC. The description of the steps and the
timing analysis will help us understand the challenges in-
volved in parallelizing the EMP protocol.

3.1. Basic steps at the sending and receiving side

Here we outline the basic steps happening at the sending
side and the receiving side of the EMP protocol. The send-
ing side performs the following steps.

1. Send bookkeeping: The process of preparing a frame
before transmitting. Here we keep a record of all
the information which is necessary for reliability pur-
poses.

2. Transmission: This step involves the actual sending of
data to the wire once all the bookkeeping is over.

3. Receive acknowledgment: This step happens when the
receiving side acknowledges that it has received a cer-
tain number of frames.

Similarly, the receiving side performs the following steps.

1. Receive bookkeeping: The process of keeping track of
incoming frames for reliability purposes and allowing
for the acceptance of out of order frames.

2. Receive: Here the data is communicated to the host via
DMA after the bookkeeping phase is over.

3. Send acknowledgment: Once the receiver has pro-
cessed a known number of frames it sends an acknowl-
edgment to the sender. This step is required for relia-
bility.

These steps are described in detail below.

3.1.1. Send bookkeeping

Send bookkeeping refers to the operations which take place
for preparing the frame for being sent. The bookkeeping
operations can be outlined as:

• Handle posted transmit descriptor: This step is initi-
ated by the host which operates asynchronously with
the NIC. The introduction of each new transmit request
leads to the rest of the operations. This operation takes
place for every message.

• Message fragmentation: The host desires to send a
message, which is a user-space entity corresponding
to some size of the application’s data structures. The
NIC must fragment this into frames, which is a quan-
tity defined by the underlying ethernet hardware as the
largest quantum of data which can be supported in the
network, 1500 bytes in our system. Thus, the NIC de-
termines how many frames will be necessary to send
this message. The overhead incurred for large mes-
sages is more since they contain a larger number of
frames. This implies that the bookkeeping effort will
increase with increasing message size.

• Initialize transmission record: Each message which
enters the transmit queue on the NIC is given a record
in a NIC-resident table which keeps track of the state
of that message including how many frames, a pointer
to the host data, which frames have been sent, which
have been acknowledged, the message recipient, and
so on. The NIC prepares this structure for each mes-
sage, then updates it as the message is processed
through the various stages of transmission. This record
is maintained for each message which is being trans-
mitted.

3.1.2. Transmission

The steps involved in the transmission of the frames to the
wire can be outlined as:



• DMA from HOST to the NIC: The NIC contains two
DMA channels to transfer data between its local mem-
ory and the host memory. Managing these channels
in order to keep them active can require significant
resources of the internal processor. To help off-load
some of these tasks from the internal processor, the
“DMA Assist” state machine was added by the hard-
ware designers to perform the most time critical tasks.
DMA descriptors are used by firmware to pass the rel-
evant information about a DMA to the assist logic.
These DMA descriptors reside in a small portion of
the local memory and are organized into a ring struc-
ture. Once the bookkeeping steps for the frame are
over, the DMA assist engine will queue a request for
data from the HOST. When the transfer has completed,
it will automatically tell the MAC to send the frame.
The transfer is made in the send buffer which is up-
dated after each transfer. This set of operations takes
place for every frame and hence will take more time
for large message sizes.

• MAC to wire: The NIC uses MAC transmit descriptors
to keep track of frames being sent to the serial Ethernet
interface. The format of these descriptors is fixed to al-
low the hardware to directly reference the fields within
the descriptors. The MAC is responsible for sending
frames to the external network interface by reading
the associated MAC transmit descriptor and the frame
from the local memory buffer. Frames are sent only
when a valid descriptor is ready and the send buffer
indicates that the data is available. The send buffer is
updated after the DMA is completed by the DMA as-
sist engine which informs the MAC to start sending the
data. There are 256 MAC transmit descriptors which
can be used for transmitting data. This operation hap-
pens for every single frame and each frame uses one
MAC descriptor, hence the overhead incurred will in-
crease with increasing message size.

3.1.3. Send acknowledgment

This step, though it happens on the receiver, involves a com-
bination of bookkeeping and transmission. The acknowl-
edgment is sent as a single frame with some control infor-
mation but no data. Hence the overhead involved in this step
is not as large as that for any data frame. Moreover, this
does not involve per-frame overhead because an acknowl-
edgment is sent only for complete groups of frames.

3.1.4. Receive bookkeeping

The receive bookkeeping refers to the operations which
need to be performed before the frame can be sent to the
host. These operations are:

• Handle pre-posted receive descriptor: This step is ini-
tiated by the host for messages it expects to receive in
future. Here the state information which is necessary
for matching an incoming frame is stored at the NIC. In
the current setup if a frame arrives and it does not find
a matching pre-posted descriptor, it is simply dropped.
This is done to avoid buffering at the NIC [9]. This
step happens for every message.

• Classify frame: This step does multiple things. It looks
at the header of each incoming frame and identifies if it
is a header frame, data frame, acknowledgment frame
or negative acknowledgment. It also identifies the pre-
posted receive to which the incoming frame belongs by
going through all the pre-posted records. In the pro-
cess it also identifies if the frame has already arrived
and, if so, drops it. In case a data frame arrives arrives
before the corresponding header frame, it is dropped
as well. Classify frame is performed for every frame
and hence the overhead per message increases with in-
creasing message size.

• Receive frame: Once the frame has been correctly
identified in the previous step, the information in the
frame header is stored in the receive data structures for
reliability and other bookkeeping purposes. Receive
frame also initiates the DMA of the incoming frame
data after filling in the receive data structures with
fields including message sequence number, frame se-
quence number, etc. After this step the frame is ready
to be DMAed to the host. Receive frame is also done
for every frame and the overhead increases as the mes-
sage size increases.

3.1.5. Receiving

The step comprising the actual receiving process involves
the following operations:

• Wire to MAC: Similar to transmission, the NIC uses
MAC receive descriptors to keep track of frames be-
ing received from the serial Ethernet interface. Again,
the format of these descriptors is fixed like the trans-
mit descriptors to allow the hardware to directly refer-
ence the fields within the descriptors. Error conditions
are monitored during frame reception and reported to
the firmware through the status word located in the de-
scriptors. Before the data is given to the NIC the 32 bit
CRC is verified and noted in the status word.

• NIC to HOST: Here the DMA Assist engine comes
into play exactly like in the transmit case in Sec-
tion 3.1.2. The only difference is that the DMA assist
engine operates in the reverse direction, moving the
data to the host instead of to the NIC.



3.1.6. Receive acknowledgment

Once the sender knows that the receiver has successfully
received the frames it can release the resources related to
the sent data. In this step there is no data to be DMAed
to the host and hence the overhead is lower than that of
receiving any data frame. Receive acknowledgment intro-
duces only minimal per-frame overhead, again, because ac-
knowledgment is a process which applies only to groups of
frames [9].

3.2. Timing analysis of the messaging layer compo-
nents

We did a complete time profiling of our protocol to find
out how much time is spent in each of the steps. As we dis-
cussed, each of the steps consists of one or more operations.
But for the sake of clarity we are showing only the timings
for the major steps. Table 1 shows the analysis. These num-
bers correspond to two dual 933 MHz Intel PIII systems,
built around the ServerWorks LE chipset which has a 64-bit
66 MHz PCI bus, and using unmodified Linux 2.4.2.

Receive bookkeeping is more expensive than send book-
keeping because while sending, the frames are sent in order
but they can arrive out of order on the receive side (due to
switch dropping and reordering of frames). So extra effort
is needed per frame to accept these out of order frames and
put them in the correct order. Moreover, since the frames
can be out of order, for each frame one has to go through
all the pre-posted records to see if it belongs to any of them
which also contributes to a large overhead.

Table 1. Timing analysis for the major func-
tional operations.

Operation Time (us)
Send bookkeeping 5.25

Handle posted transmit descriptor
Message fragmentation
Initialize transmission record

Transmission 5.50
DMA from host to NIC
Queue frame to MAC

Receive acknowledgment 5.75
Recv bookkeeping 10.50

Handle posted receive descriptor
Classify frame
Receive frame

Receiving 2.75
Receive frame from MAC
DMA from NIC to host

Send acknowledgment 2.50

4. Challenges in Taking Advantage of a Multi-
CPU NIC

In order to take advantage of a multi-CPU NIC, the basic
steps in sending and receiving need to be distributed across
the two processors. However these steps need to share some
common state information at some point in the execution.
Typically, NICs have very limited hardware resources to as-
sist in this operation without introducing additional over-
head. Here, we take a critical look at the limitations of the
Alteon NIC and the potential alternatives for achieving our
objective.

4.1. NIC constraints

The Alteon NIC does not provide hardware support for
concurrency. There is only one lock, hence fine-grained par-
allelism is expensive. Coarse-grained parallelism is inap-
propriate for the kind of operations performed at the NIC,
due to its limited resources. Shared resources (MAC, DMA)
do not have hardware support for concurrency, and use the
only available lock, thus overloading that single semaphore.

4.2. Achieving concurrency

Consider a simple unidirectional flow scenario for reli-
able communication. While the send is happening on the
sender side, a receive is also actually taking place (e.g. re-
ceive acknowledgments) on the same side. This the process
of sending data (or acknowledgments) can be overlapped
with the process of receiving data (or acknowledgments) on
different processors on the sending side and/or the receiv-
ing side. During this overlap there are scenarios where the
state information needs to be shared between the conceptual
sending steps and the receiving steps.

To minimize sharing of such state one may keep sepa-
rate data structures for send bookkeeping and receive book-
keeping so that both the operations can happen in parallel
without needing to access the other’s data structure for state
information. However, this cannot be guaranteed for every
case. Thus, even while the data structures might be different
for send and receive processing, there will still be a need for
some form of mechanism for sharing information.

One way to solve this problem would be to share the data
structures across the CPUs. However this would mean that
each access to the data structure requires synchronization.
This would be very expensive since the data structures are
accessed frequently, and each access would lead to synchro-
nization overhead.

To reduce the synchronization overhead, the bookkeep-
ing data structures can be fine-grained so that locking one
data structure does not lead to halting of other operations
which can proceed using other unrelated data structures.



One may also accomplish synchronization by allocating
a special region in the NIC SRAM where one CPU would
write the data needed by the other CPU, which would then
read the common data from there. This would help in com-
municating the common data across the CPUs without caus-
ing the overhead related to the sharing of data structures.
There is an overhead involved in this operation, of course,
but this overhead is only explicitly generated when there is
a need for data sharing between the CPUs. This might be a
better option because if we allow the send and receive data
structures to be shared there will be overhead for each ac-
cess to them even when there is no need simply because it
happens to be shared data. One problem with this solution,
though, could be the contention for the common area.

4.3. Exploiting pipelining and parallelization

Amdahl’s law states that the speed-up achievable on a
parallel computer can be significantly limited by the exis-
tence of a small fraction of inherently sequential code which
cannot be parallelized. In any reliable network protocol
there will be a lot of steps which have to be executed se-
quentially. In fact, serially constrained operations become
the norm. As an example, in transmission, before the frame
can be sent, one has to attach the frame header and perform
other bookkeeping operations for reliability purposes. This
puts a limit on the amount of work which can be scheduled
in parallel. This limitation forces us to think about the un-
derlying implementation and make appropriate changes so
that we can perform the maximum number of operations
in parallel. In addition to parallelization, pipelining can
also be exploited, where the operations happen one after
another but not in parallel. In the previous example, if the
bookkeeping steps for a frame happen on one processor and
the actual transmission on another it will be an example of
pipelining, because for the same frame both these steps can-
not happen at the same time. Bookkeeping and transmission
can happen in parallel but for different frames, hence must
be categorized as pipelining as opposed to parallelism. In
this paper, we explore both pipelining and parallelization to
enhance the performance of user-level protocols with multi-
CPU NICs.

5. Schemes for Parallelization and Pipelining

In this Section, we propose and analyze alternative
schemes to enhance the performance of the EMP protocol
with the support of a two-CPU NIC. The basic approach
was to distribute the major steps of send and receive paths
to achieve a balance of work on the two processors. This
break-up was done with the goal of achieving pipelining
or parallelism—whichever would be possible depending on
the implementation. We tried to achieve the latter as much

Table 2. Function distribution (unidirectional).

Send cpu A (us) cpu B (us)
SO send bookkeep 5.25 transmission 5.50

recv ack 5.75
RO send bookkeep 5.25

transmission 5.50
recv ack 5.75

DSR send bookkeep 5.25 recv ack 3.25
transmission 5.50
recv ack 2.50

SR send bookkeep 5.25 transmission 5.50
recv ack 5.75

Recv cpu A (us) cpu B (us)
SO recv bookkeep 6.25 send ack 2.50

recv frame 4.25
receiving 2.75

RO recv bookkeep 6.25 recv frame 4.25
send ack 2.50 receiving 2.75

DSR send ack 2.50 recv bookkeep 6.25
recv frame 4.25
receiving 2.75

SR recv bookkeep 6.25 recv frame 4.25
send ack 2.50 receiving 2.75

as possible but were limited by the inherent sequentiality of
the protocol in many cases.

We analyzed the send path and the receive path for par-
allelization based on our timing analysis and recognized the
following four alternatives.

• SO: The send path only is split up across the NIC
CPUs.

• RO: The receive path only is split up across the NIC
CPUs.

• DSR: The send path and receive path have dedicated
processors to themselves.

• SR: Both send and receive path are split up.

For each of these alternatives, we illustrate how differ-
ent components (steps) are distributed over two proces-
sors at both the sending and receiving sides. We com-
pare our schemes with the base case scheme where all the
sending-side components happen on the same CPU, as do
the receive-side operations. CPU B is not used.

5.1. SO

The split up of the send path in SO happens as shown
in Table 2. Here, we are aiming to achieve pipelining by
running the bookkeeping phase of a later message with the
transmission phase of an earlier message for a unidirec-
tional flow. The idea is to have another message ready for



transmission by processor A while the previous message is
actually being transmitted by B. There is some parallelism
also happening at the receiver between ‘send ack’ (2.50 us)
and a part of receiving(2.75 us). The receive path for SO
remains the same as in the base case. One needs to distin-
guish the difference between the receive path and receive
side. The receive path is made up of receive bookkeeping
and actual receiving (DMA). The assignment of send ac-
knowledgment on the receiver is a part of the SO scheme
since send ack involves steps which are used in sending and
not receiving.

5.2. RO

The split up of functions in RO happens as shown in Ta-
ble 2. Here, we are able to achieve true parallelism. The
send ack (2.50 us) happens in parallel with the receive dma
(2.75 us) and a part of receive bookkeeping (4.25 us). The
split-up of receive bookkeeping helps in achieving pipelin-
ing also. We are able to achieve a very good balance of
functions on the receiving side. The send path remains the
same as in the base case. Again, similar to the receive path
scenario one needs to distinguish between the send path and
sending side. The sending side has a receive step happening
which is a part of the receive path and hence happening as
in the base case as well.

5.3. DSR

In this case, we are dedicating one CPU each for the send
path and the receive path on the sending as well as receiving
side. This helps us to achieve an almost complete split of
the send and receive paths. The receive acknowledgment
step is split on the sending side because a part of it needs to
update the send data structures and hence it is scheduled at
the send processor. The functions are distributed as shown
in Table 2.

5.4. SR

Here we combine the optimized send path and receive
path together to see if we can benefit from the overall op-
timization of the protocol. It is a combination of SO and
RO as depicted in Table 2. This is an attempt to extract the
maximum benefit by putting together the individually op-
timized send and receive paths. We hope to gain from the
benefits of pipelining on the send side and parallelization on
the receive side.

6. Exploiting the NIC hardware capability

To solve the problem of synchronization we allocated a
special common area in the NIC SRAM through which the

CPUs can communicate common data. The benefits of such
an approach were discussed in Section 4.

We developed a pair of calls,spin lock and
spin unlock , which are used to gain exclusive access for
protected code regions. We would have preferred to have
multiple points of synchronization to implement object-
specific locking, but the hardware provides exactly one
point for inter-CPU synchronization through a semaphore.
Thus accesses to protected regions become potentially very
expensive due to high contention for this single lock.

The other communication mechanism we used was to set
bits in the event register of each processor. These calls use
spin locks to guarantee exclusive access to the event regis-
ter, whereby one CPU sets a bit in the event register of the
other. The second CPU will notice this event in its main
priority-based dispatch loop, clear the bit, and process the
event. We used an “edge-triggered” model, and guarantee
that events do not get lost by using the lock and by having
the setting processor check to make sure that the bit is clear
first.

Running two processors simultaneously puts more load
on the memory system in the NIC. We attempt to this al-
leviate pressure somewhat by moving frequently used vari-
ables to the processor-private “scratchpad” memory area in
each CPU. This small region (16 kB on cpu A, 8 kB on cpu
B) also has faster access times, so we put frequently-called
functions there too. Important functions that are used by
both processors are replicated into both scratchpads. Source
code annotations and a special linker script are used to po-
sition the functions in the various memory areas.

7. Performance Evaluation

7.1. Experimental setup

For the Gigabit Ethernet tests, we used two dual
933 MHz Intel PIII systems, built around the ServerWorks
LE chipset which has a 64-bit 66 MHz PCI bus, and un-
modified Linux 2.4.2. Our NICs are Netgear 620, which
have 512 kB of memory. The machines were connected
back-to-back with a strand of fiber.

7.2. Results and Discussion

In this Section we analyze the results derived from the
alternatives discussed so far. We tested each of our alterna-
tives for unidirectional as well as bidirectional flows. For
unidirectional flow, we evaluated latency as well as band-
width. For bidirectional flow, we evaluated bandwidth. We
get better performance than the base case (single CPU per
NIC) by using at least one alternative in each of the cases.

In all the alternatives the gain achieved due to pipelin-
ing/parallelism is offset to some extent by the overhead in-



volved in switching control between CPUs. This happens
because during the execution of the protocol one CPU might
come across a task which is to be scheduled on the other
processor. Hence, there is an extra overhead involved in this
communication. This overhead is different for the various
alternatives depending on how the components have been
distributed across the CPUs.

7.2.1. Unidirectional Traffic

The latency is determined by halving the time to complete
a single ping-pong test. The “ping” side posts two descrip-
tors: one for receive, then one for transmit, then a busy-wait
loop is entered until both actions are finished by the NIC.
Meanwhile the “pong” side posts a receive descriptor, waits
for the message to arrive, then posts and waits for transmis-
sion of the return message. This entire process is run in a
loop of 10 000 iterations from which an average round-trip
time is produced, then divided by two to estimate one-way
latency.

The unidirectional throughput is calculated from one-
way sends with a trailing return acknowledgment. The user-
level receive code posts as many receive descriptors as pos-
sible (about 400), and continually waits for messages to
come in and posts new receives as slots become available.
The transmit side posts two transmit descriptors so that the
NIC will always have something ready to send, and loops
waiting for one of the sends to complete then immediately
posts another to take its place. Each transmit is known to
have completed because the receiving NIC generates an ac-
knowledgment message which signals the sending NIC to
inform the host that the message has arrived. This is iter-
ated10 000 times to generate a good average.

SO The unidirectional bandwidth (Figure 2) is the same
as in the base case. To analyze this case we need to con-
sider the factors which are speeding up execution and the
factors which are impeding it. On the sending side the ben-
efit is obtained due to pipelining (when send bookkeeping
and transmit work one after the other) and parallelism (ack
receive happens at the same time as transmit).

However the gains are offset by two factors. First, the
overhead in inter-CPU communication. Next, while com-
paring the receive path and the send path, we can see that
the receive path has more overhead than the send side. The
sending side cannot send at any rate since it will swamp the
receiver. It waits for the acknowledgment from the receiv-
ing side for a certain number of messages (two in our case)
before it sends out more messages. Thus whatever speedup
which can be gained due to pipelining or parallelism is lim-
ited by the reception of acknowledgments from the receiver
which is again dependent on receive processing. Since the
receive processing is happening in the same way as the base

case except for a very small amount of parallelism (which
is offset by the inter-CPU communication overhead), the
pipelining/parallelization does not demonstrate much bene-
fit for the SO case.

By looking at Figure 1 we can conclude that latency
does not degrade much even for large message sizes. For
a 10-byte message we see a latency of 24.52 us, which was
marginally higher than the base case latency of 24.31 us, a
degradation of less than one percent.

RO The unidirectional bandwidth (Figure 2) is much bet-
ter than the base case. In fact it reaches up to 99.78% of
the theoretical throughput limit on Gigabit Ethernet (taking
into account the required preamble and inter-frame gap and
our protocol headers). Factors which speed up the execution
are:

• On the receiving side, the benefit is obtained due to
parallelization of send acknowledgment on CPU A and
receive bookkeeping and receive DMA on CPU B.

• The distribution of jobs on the receiving side is well
balanced, resulting in both the CPUs being occupied
most of the time.

Since the receive side, which is more demanding of pro-
cessor cycles than is the send side, has been parallelized
effectively we can achieve almost the maximum possible
bandwidth. This implies that the receive side is the bottle-
neck which is also confirmed by our results from the SO
case where we left the receive side unaltered and did not
achieve any benefits even though we had pipelining and par-
allelism on the send side.

By looking at Figure 1 we can observe that even the la-
tency improves for RO parallelism, both at small and large
message sizes. For a 10-byte messages we obtained a la-
tency of 22.62 us which is an improvement over the base
case latency of 24.31 us, a gain of about 7%. For a mes-
sage size of 14 kB we were able to achieve a latency im-
provement of about 8.3%, indicating that the rate of latency
improvement increases with increasing message size.

By this we can conclude that whatever overhead is in-
volved in inter-CPU communication is more than offset
by the parallelism between receive bookkeeping, receive
DMA, and send acknowledgment.

DSR The unidirectional bandwidth (Figure 2) is
marginally better than the base case. Here the scenario
is very similar to the SO case with the receive side being
the bottleneck. However, since on the receive side we do
schedule send acknowledgment to happen on a different
CPU, we are able to see the marginal improvement in
bandwidth numbers. The improvement is marginal because



0

10

20

30

40

50

60

0 1 2 3 4

Latency (us)
base case

SO
RO

DSR
SR

0

50

100

150

200

0 4 8 12

Latency (us)
base case

SO
RO

DSR
SR

Figure 1. Latency comparisons for small and large message sizes with unidirectional traffic. The
x-axis is indicates message size in kilobytes. The y-axis shows latency in microseconds.

400

500

600

700

800

900

1000

1100

1200

0 5 10 15 20

Unidirectional bandwidth (Mb/s)
base case

SO
RO

DSR
SR

Figure 2. Bandwidth comparisons for unidirectional traffic. The x-axis is indicates message size in
kilobytes. The y-axis shows bandwidth in Mb/sec.



Table 3. Function distribution (bidirectional).
Send cpu A (us) cpu B (us)
SO send bookkeep 5.25 transmission 5.50

recv ack 5.75 send ack 2.50
recv bookkeep 6.25
recv frame 4.25
receiving 2.75

RO send bookkeep 5.25 recv frame 4.25
transmission 5.50 receiving 2.75
recv ack 5.75
recv bookkeep 6.25
send ack 2.50

DSR send bookkeep 5.25 recv bookkeep 6.25
transmission 5.50 recv frame 4.25
recv ack 2.50 receiving 2.75
send ack 2.50 recv ack 3.25

SR send bookkeep 5.25 transmission 5.50
recv bookkeep 6.25 recv frame 4.25
recv ack 5.75 receiving 2.75
send ack 2.50

Recv cpu A (us) cpu B (us)
SO send bookkeep 5.25 transmission 5.50

recv ack 5.75 send ack 2.50
recv bookkeep 6.25
recv frame 4.25
receiving 2.75

RO send bookkeep 5.25 recv frame 4.25
transmission 5.50 receiving 2.75
recv ack 5.75
recv bookkeep 6.25
send ack 2.50

DSR send bookkeep 5.25 recv bookkeep 6.25
transmission 5.50 recv frame 4.25
recv ack 2.50 receiving 2.75
send ack 2.50 recv ack 3.25

SR send bookkeep 5.25 transmission 5.50
recv bookkeep 6.25 recv frame 4.25
recv ack 5.75 receiving 2.75
send ack 2.50

send acknowledgment is only a very small portion of the
entire receive side processing.

By looking at Figure 1 we can conclude that latency also
benefits with this approach though the benefit is marginal.
For a 10-byte message, the latency is 22.76 us which is a
6.4% improvement over the base case latency.

SR This alternative gives the best unidirectional band-
width. One is able to achieve almost complete utilization
of Gigabit Ethernet’s bandwidth. The results are very simi-
lar to the RO case but one can see the benefits of pipelin-
ing/parallelizing the send path also in the SR case (Fig-
ure 2). If we look at Figure 1 we can see that with increasing
message sizes the latency also goes on reducing like in the
RO case though the improvement is not as much as in the
RO case.

7.2.2. Bidirectional Traffic

Bidirectional throughput is calculated in a manner similar
to the unidirectional throughput, except both sides are busy
sending to each other. After the startup pre-posting of many
receive descriptors, the timer is started on one side. Then
two messages are initiated at each side, and a main loop
is iterated10 000 times which consists of four operations:
wait for the oldest transmit to complete, wait for the oldest
receive to complete, post another transmit, post another re-
ceive. Using one application rather than two on each host
ensures that we do not suffer from operating system sched-
uler decisions. Testing in this alternative manner gives the
same results, although longer averages are necessary due to
burstiness induced by context switches.

Bidirectional traffic is more complex than unidirectional
traffic. In order to understand the benefits of our schemes
for bidirectional traffic, let us analyze the distribution of the
basic steps for these cases. These distributions are shown in
Table 3.

SO For bidirectional traffic, the distribution of steps is as
shown in Table 3. This is not a different implementation
but just the adjustment of steps from the unidirectional case
when there is traffic in both the directions. The same is true
for all other parallelization alternatives.

The bidirectional bandwidth (Figure 3) shows consider-
able improvement over the base case. This is happening
because both the CPUs have more functions to perform in
parallel (Table 3). Thus, the gain obtained more than off-
sets the inter-CPU communication overhead.

RO The bidirectional bandwidth (Figure 3) shows consid-
erable improvement over the base case. This is happening
because both the CPUs again are kept busier, and hence op-
erate more in parallel (Table 3), once again offsetting the
communication overhead. As we approach large message
sizes the bandwidth drops below SO. This may be attributed
to the following factors:

• In the RO case every frame causes communication
overhead as compared with the SO case where only
every third frame (acknowledgment group size) causes
communication overhead.

• The amount of work which can happen in parallel on
CPU B is less than that available in the SO case.

However, in Figure 3 the RO bandwidth numbers for
medium-sized messages is larger than the SO case. This
may be because for small messages there will be fewer
frames and hence less communication overhead while re-
ceiving as compared to large message sizes. Also, the ratio



0 5 10 15 20 25

Bidirectional bandwidth (Mb/s)
base case

SO
RO

DSR
SR

Figure 3. Bandwidth comparisons for bidirectional traffic. The x-axis indicates message size in
KBytes. The y-axis shows bandwidth in Mb/sec.

of work distribution on A and B is better for RO as com-
pared to SO. These factors combine to give RO better band-
width numbers for medium-sized messages.

DSR The bidirectional bandwidth (Figure 3) shows con-
siderable improvement over the base case as well, for the
same reasons as in the previous two strategies. However
the gain is not as much as the RO scheme for medium-
sized messages because the receive bottleneck offsets the
gain obtained by the parallelism whereas in the RO case the
gains due to distribution of receive path offsets the the inter-
CPU communication overhead. However, for large mes-
sages (more frames) this communication overhead starts to
affect the RO case and it starts dropping. The SO scheme
outperforms all other alternatives, showing that for large
messages the send path pipelining begins to have a positive
impact on the bandwidth and overcomes the effect of the
receive bottleneck. This is corroborated by the reduction in
bandwidth in the RO case at larger message sizes indicating
that splitting the receive path introduces a lot more overhead
in the bidirectional case for large messages.

SR The bidirectional bandwidth (Figure 3 shows maxi-
mum improvement over all the cases up till medium sized
messages. However, it begins to drop after a certain mes-
sage size. This happens because initially the gain obtained
by parallelism offsets the inter-CPU communication.

Since we have combined the optimized paths of SO and

RO case we are able to schedule maximum number of steps
in parallel. Hence we derive the best performance initially.
However, since there are more number of steps which are
happening in parallel, the inter-CPU communication is also
the maximum among all the alternatives. As the message
size starts increasing this negates the gain obtained due to
parallelism. For this reason the performance drops below
all the other options for very large message sizes.

8. Related Work

All the previous efforts to parallelize the network proto-
cols have been focussed on WAN protocols such as TCP/IP
and Symmetric Multi Processor (SMP) systems. The re-
search directions have identified various mechanisms of
achieving the parallelization [12]. We will outline some of
these approaches in this Section. One of the approaches has
analyzed in detail packet level parallelism where the packets
are distributed across the processors. This gives the capa-
bility to the protocol to process multiple packets in paral-
lel [5]. This approach has been shown to achieve speedup
both with multiple connections and with a single connec-
tion. For layered protocols following the TCP/IP and the
OSI model, attempts have been made to analyze the par-
allelism between the execution of different layers. This is
also know as vertical decomposition of the network proto-
col [15]. The approach in [15] divides the send path from
the receive path and tries to do them in parallel. This has



come to be known as horizontal subdivision of a layer in
a multi-layer protocol. Another approach has been to split
the components of the protocol into different functions and
distributing these functions across multiple processors [8].
This turns out to be a good approach for feature rich proto-
cols.

It is to be noted that all these research directions focus
on host-based layered protocols and try to exploit SMP sys-
tems. The focus of our work is how to take advantage of
multi-CPU NIC to enhance user-level protocols. It must be
remembered that the goal of fast communication is not for
its own end, but rather to enable cooperating host machines
to exchange data quickly. If the host CPUs are involved in
moving the data across the network, they have fewer cycles
available to devote to the parallel application itself.

9. Conclusions and Future Work

In this paper, we have presented how to take advan-
tage of a multi-CPU NIC, as available in Alteon NIC core
implementations, to improve point-to-point communication
performance on Gigabit Ethernet. We have considered
our earlier developed EMP protocol (valid for single-CPU
NIC) and analyzed different alternatives to parallelize and
pipeline different steps of the communication operation.
The study shows that parallelizing the receive path can de-
liver maximum benefits for unidirectional latency and band-
width. In fact, this scheme allows us to reach the theoretical
throughput of the medium. Similarly, dedicated assignment
of send and receive functionalities to different CPUs deliv-
ers very good bidirectional bandwidth.

As a result of our investigations into work distribution
strategies on the multi-CPU Alteon NIC, we have deter-
mined multiple promising paths for future study. However,
the distribution of steps in each path happens at compile
time. operation. We would like to produce a truly dynamic
event scheduling system, where the next available event is
handled by either processor when it becomes free.

We are also exploring the benefits of multi-CPU NICs
to support collective communication operations efficiently.
We plan to perform application-level performance evalua-
tion for our scheme. Another interesting direction is to ex-
plore the required architectural support at the NIC to par-
allelize both point-to-point and collective communication
operations.

10. Acknowledgments

We would like to thank Sandia National Laboratories for
sponsoring this project. We would also like to thank the
graduate students and the faculty of the NOW (Network of
Workstations) lab at the Ohio State University for giving

us their invaluable advice on numerous issues related to the
project.

References

[1] M. Banikazemi, V. Moorthy, L. Herger, D. Panda, and
B. Abali. Efficient Virtual Interface Architecture support for
the IBM SP switch-connected NT clusters. InIPDPS, May
2000.

[2] N. Boden, D. Cohen, and R. Felderman. Myrinet: a giga-
bit per second local-area network.IEEE Micro, 15(1):29,
February 1995.

[3] Infiniband. http://www.infinibandta.org.
[4] MVIA. http://www.nersc.gov/research/FTG/via, 1998.
[5] E. Nahum, D. Yates, J. Kurose, and D. Towsley. Perfor-

mance issues in parallelized network protocols. InProceed-
ings of the First USENIX Symposium on OSDI, pages 125–
137, November 1994.

[6] Netgear. http://www.netgear.com/adaptersmain.asp.
[7] S. Pakin, M. Lauria, and A. Chien. High performance mes-

saging on workstations: Illinois Fast Messages (FM) for
Myrinet, 1995.

[8] T. Porta and M. Schwartz. A high-speed protocol par-
allel implementation: design and analysis. InFourth
IFIP TC6.1/WG6.4 International Conference on High Pe-
formance Networking, pages 135–150, December 1992.

[9] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-
bypass NIC-driven gigabit ethernet message passing. InPro-
ceedings of SC01, November 2001.

[10] E. Speight, H. Abdel-Shafi, and J. Bennett. Realizing the
performance potential of a virtual interface architecture. In
Proceedings of the International Conference on Supercom-
puting, June 1999.

[11] TechFest. http://www.techfest.com/networking/lan/ethernet2.htm.
[12] J. Touch. Protocol parallelization. InProtocols for High

Speed Networks IV, pages 349–360, 1995.
[13] VI. http://www.viarch.org, 1998.
[14] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net:

A user-level network interface for parallel and distributed
computing. InProceedings of the 15th ACM Symposium on
Operating Systems Principles, December 1995.

[15] M. Zitterbart. High-speed protocol implementations based
on a multiprocessor architecture. InProtocols for High
Speed Networks, pages 151–163, 1999.


