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Abstract

Access to shared data is critical to the long term suc-
cess of grids of distributed systems. As more parallel ap-
plications are being used on these grids, the need for some
kind of parallel I/O facility across distributed systems in-
creases. However, grid middleware has thus far had only
limited support for distributed parallel I/O.

In this paper, we present an implementation of the MPI-
2 I/O interface using the Globus GridFTP client API. MPI
is widely used for parallel computing, and its I/O interface
maps onto a large variety of storage systems. The limita-
tions of using GridFTP as an MPI-I/O transport mecha-
nism are described, as well as support for parallel access
to scientific data formats such as HDF and NetCDF. We
compare the performance of GridFTP to that of NFS on
the same network using several parallel I/O benchmarks.
Our tests indicate that GridFTP can be a workable trans-
port for parallel I/O, particularly for distributed read-only
access to shared data sets.

1. Introduction

As grids of distributed systems become more com-
monly used for parallel computations, shared access to
data becomes increasingly problematic. Most of the so-
lutions used for shared data access on parallel systems,
such as cluster or parallel file systems, are not appropri-
ate for use across wide-area networks. However, grid data
services can be accessed in ways very similar to parallel
I/O systems, so extending parallel I/O capabilities to grid
applications is a natural extension of existing practice.

1.1 MPI-2 Parallel I/O

The Message Passing Interface, or simply MPI, has
long been the standard interface for developing parallel

applications, particularly on distributed-memory architec-
tures such as MPP supercomputers and clusters. MPI has
been implemented on a large number of communication
technologies, ranging from TCP/IP, to InfiniBand [13], to
Globus [10]. However, MPI-2, the second major version
of the MPI standard [9], also describes an interface for
performing I/O operations on files in parallel, including
interleaved individual or collective access to shared files.
While the ROMIO implementation of the MPI-2 I/O inter-
face [21, 22] has been implemented on a large number of
storage systems thanks to its ADIO abstract device inter-
face [20], the only implementation using a grid data man-
agement protocol is not widely available and relies upon
a long deprecated protocol [3]. However, an ADIO driver
using a widely available grid data service would immedi-
ately allow a large base of MPI programs to be used more
effectively in grid environments.

1.2 Globus and GridFTP

The Globus Grid Toolkit [1] is a widely used set
of tools and libraries for grid computing, including
certificate-based authentication and data management ser-
vices. The lowest level of the Globus data management
services is GridFTP [7, 8], an extension of the venerable
File Transfer Protocol [18] using the Globus Grid Security
Infrastructure (GSI) [2]. The client interface to GridFTP
supplies almost all of the operations needed to implement
the MPI-2 I/O interface. Furthermore, since several MPI
implementations already support authentication and com-
munication using Globus protocols, building an MPI-2 I/O
interface atop GridFTP allows for secure, shared access to
files in those same environments.

1.3 Goals

In this paper, we will describe the design and then the
implementation of a driver for the ADIO component of
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ROMIO using the GridFTP client interface. We will also
discuss the capabilities and limitations of this software,
including functionality and performance. Finally, we will
discuss future directions and improvements that could be
made to the current implementation.

2. Design Considerations

Since a GridFTP “file system” does not implement all
of the functionality of a POSIX file system, it requires
some special care in the semantics of certain operations.
As shown in Table 1, the GridFTP client interface has
equivalents to most (though not all) POSIX and MPI-2
I/O operations, and in cases where there is not a one-to-
one correspondence in functionality, the actions taken by
the GridFTP driver for ROMIO must endeavor to conform
as closely to the requirements of the MPI-2 specification
as possible. In a few cases however, this proved extremely
difficult.

2.1 GridFTP Namespace

The first consideration in designing an I/O storage sys-
tem is its namespace. Files in GridFTP are referenced
using a URL, of the forms ftp://host/path/file
or gsiftp://host/path/file. The difference be-
tween these is the protocol used; ftp:// URLs use the
traditional FTP protocol, while gsiftp:// URLs may
also use GridFTP extensions such as GSI authentication,
extended block mode, and parallel data transfers. Hap-
pily, ROMIO has support for a file system prefix with a
URL-like syntax in its file name handling routines (eg.
pvfs:/pvfs/dir/file), so extending them to han-
dle GridFTP URLs was straightforward.

2.2 Basic I/O Operations Using GridFTP

The I/O operations in the GridFTP client interface, like
most Globus routines, are designed to be called asyn-
chronously. A callback routine supplied at invocation is
executed when the operation completes. A mutual exclu-
sion (mutex) lock is used to ensure that only one thread
may signal the completion of a data transfer. A further
complication is that GridFTP follows the FTP model of
client-server operation, where there are separate control
and data transfer channels. Thus, the algorithm for initiat-
ing a blocking read or write transaction is as follows:

1. Initiate I/O transaction on control channel

2. Initiate one or more data transfers on data channel

3. Acquire lock

4. Wait for control channel transaction to complete; this
implies data transfer completion as well

5. Release lock

2.3 Limitations of the GridFTP Client Interface

While the asynchronous design of the GridFTP
client interface makes it seem natural for use in im-
plementing MPI-2 nonblocking I/O operations such as
MPI File iread(), it unfortunately has a significant
limitation: a GridFTP file handle may have only one con-
trol channel operation in progress at any time per client
process [6]. MPI-2 I/O semantics, on the other hand, allow
multiple asynchronous I/O operations to be in progress at
the same time. This semantic mismatch can be addressed
in two ways. The first and simpler approach is treat all
I/O operations as blocking, which is the approach used
by the version of the ROMIO GridFTP driver described
here. This requires that MPI-2 nonblocking I/O operations
block silently, which implies waits issued against these
nonblocking operations return immediately. A more el-
egant but complex solution to this problem would be to
maintain a FIFO queue of I/O operations and have the
completion of the top operation on the queue initiate the
operation following it.

Another significant limitation of the GridFTP client in-
terface is that is it has no concept of access modes, such
as read-only or write-only. The MPI-2 I/O interface, on
the other hand, has a large set of access modes derived
largely from POSIX. As a result, read and write opera-
tions at the ADIO driver level for GridFTP must check
the access modes and set error conditions appropriately.
For instance, if an MPI File write() is issued against
a GridFTP URL opened read-only, the ADIO driver for
GridFTP must abort the operation and issue an error be-
fore any GridFTP client routines are invoked.

The data transfer routines in the GridFTP client
interface, globus ftp client register read()
and globus ftp client register write(),
have slightly different interfaces; the write routine has
an offset parameter that the read routine lacks [5]. This
affects the implementation of strided reads, since the read
cannot specify an offset. There are at least two possible
solutions to this. One is to implement a strided read as a
sequence of separate invocations of the algorithm shown
in the previous section; however, this has the additional
overhead of doing multiple control channel operations
and mutex lock/release sequences for a single read
operation from the user’s point of view. An alternative to
this approach is to read the entire extent of the remote file
containing the desired data to the client and then copy out
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I/O Operation POSIX MPI-2 I/O GridFTP
Create creat() or MPI File open(. . . , none

open(. . .,O CREAT) MPI MODE CREATE,. . .)
Seek lseek() MPI File seek() none
Read (non-blocking) aio read() MPI File iread() globus ftp client partial get()

globus ftp client register read()
Read (blocking) read() MPI File read() globus ftp client partial get()

globus ftp client register read()
globus cond wait()

Write (non-blocking) aio write() MPI File iwrite() globus ftp client partial put()
globus ftp client register write()

Write (blocking) write() MPI File write() globus ftp client partial put()
globus ftp client register write()

globus cond wait()
Sync fsync() MPI File sync() none
Delete unlink() MPI File delete() globus ftp client delete()

Table 1. Comparison of I/O Operations

the desired portions to the user’s buffer; this alternative
requires additional memory but only one control channel
operation and mutex lock/release. The second approach
effectively trades bandwidth for server-side latency, which
is appropriate for relatively dense accesses over small
extents; it was the approach used in the implementation
discussed below.

The GridFTP client interface also lacks some fun-
damental operations that makes certain MPI-2 I/O fea-
tures difficult to implement. For instance, the GridFTP
client interface has no equivalent to the POSIX creat()
system call; there is no way to create a file that does
not already exist without writing data to it. To work
around this, the client can write a single byte to the
beginning of the file to create it, then overwrite that
byte with the first user-initiated write transaction. The
GridFTP interface also lacks a mechanism to tell the re-
mote server to flush its buffers to disk, which effectively
makes MPI File sync() impossible to implement in a
way that preserves MPI semantics. Finally, the GridFTP
interface lacks a way of explicitly requesting locks or
atomic updates on a file, which makes the implementation
of MPI File set atomicity() problematic.

3. Implementation Details

An ADIO driver atop the GridFTP client interface has
been implemented and tested using the design described in
Section 2. In the process of doing this, several issues were
uncovered that had not been expected during the design
phase of the project. In most cases, these issues could be
worked around; however, in one case the issue caused a
serious limitation in functionality.

3.1 Difficulties with Firewalls and Network Ad-
dress Translation

The Ohio Supercomputer Center (OSC), like many
sites, keeps the vast majority of its cluster compute nodes
on private networks with network address translation
(NAT) gateways to bridge to the public Internet and to
filter incoming traffic. This is not recommended by the
Globus developers, but the fact of the matter is that it is
often necessary for both security and lack of sufficient IP
address space. However, this caused significant problems
with writing files to remote GridFTP servers; the behav-
ior observed was that reading a file through a NAT fire-
wall would succeed, but writes to the same file would
fail. It was hoped initially that a NAT proxy for GridFTP
similar to those used for traditional FTP could be devel-
oped, but those hopes faded upon further observation of
how GridFTP allocates ephemeral ports on the client side.
The European Data Grid community has observed similar
behavior [14]. The Globus developers have a set of rec-
ommendations for how to configure a firewall to permit
Globus services such as GridFTP through it [25]. How-
ever, these recommendations include assigning a static
GridFTP client port range to each compute node, which is
inherently unscalable and difficult to manage in systems
with more than a few tens of compute nodes.

3.2 Limitations on MPI-I/O Functionality

As mentioned previously, limitations in the GridFTP
client interface make it extremely difficult to im-
plement MPI MODE CREATE, MPI File sync() and
MPI File set atomic(). Unexpectedly, the lack of
atomic operations made it difficult to implement shared
file pointers in the way used by other ROMIO drivers.
The natural way to implement a shared file pointer is to
store the current shared file pointer location in a sepa-
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rate file and force atomicity on it. This approach has two
drawbacks for GridFTP: first, it requires read/write access
to the directory, which may not be available for remote
GridFTP files; and second, it requires atomicity to work.
GridFTP is not alone in lacking shared file pointers un-
der ROMIO; a number of parallel file systems, including
PVFS, also lack shared file pointers.

3.3 MPI-2 File Hints

The GridFTP client interface has a number of features
that are potentially be useful to certain applications but
are disabled by default, such as striping and multiple data
transfer threads. To allow access to these features from
MPI programs, a number of GridFTP file hints were im-
plemented as part of the driver. The hints are stored as���������
	���������

pairs in an MPI Info object, which is then
used as an argument to MPI File open(). The hints
implemented for GridFTP are summarized in Table 2. The
three that may not be familiar to users of the original FTP
protocol are ftp control mode, parallelism, and
striped ftp. The ftp control mode hint sets the
FTP file transfer mode to either stream (traditional
passive FTP) or extended (allowing parallel and par-
tial transfers), the latter of which is the default. The
parallelism hint sets the maximum number of threads
that can be spawned by an individual client process to
transfer data to and from the FTP server, with a default
of one. The striped ftp hint enables striped trans-
fers when the FTP service is striped across multiple data
servers.

4. Results

The GridFTP driver for ROMIO was developed and
tested on the BALE cluster at OSC; this is a 51-node clus-
ter of dual-processor Athlon systems used for instruction
and research. The GridFTP driver has also been used
in parallel grid applications on OSC’s Cluster Ohio grid
testbed [17]. The driver passes all but two of the test pro-
grams included with ROMIO; however, the two tests that
fail require atomic updates and/or shared file pointers, so
their failures were not unexpected.

4.1 Performance

Figures 1 through 4 compare the read and write per-
formance (without and with buffer flushes) of the ROMIO
test program perf on a file accessed via GridFTP and
NFS on the OSC BALE cluster using 100 Mbit/s Ether-
net. This application has an extremely simple parallel I/O
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Figure 1. ROMIO perf Read Performance
without Sync
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Figure 2. ROMIO perf Read Performance
with Sync
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Hint Key Value Type Possible Values

ftp control mode string extended (default) or stream
parallelism integer number of threads connecting to ftp server (default 1)
striped ftp string true � false or enable � disable (default false)
tcp buffer integer size of TCP buffer in bytes
transfer type string ascii or binary (default)

Table 2. Hints for GridFTP Files in ROMIO
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Figure 3. ROMIO perf Write Performance
without Sync
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Figure 4. ROMIO perf Write Performance
with Sync
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Figure 5. FLASH I/O Benchmark Checkpoint
Performance using NetCDF

pattern: each MPI process independently writes and reads
a chunk of data (four megabytes by default) at an offset
of chunksize � MPI rank. As can be seen from the
plots, GridFTP is typically about two-thirds as fast as NFS
for reads, but as fast as or faster than NFS for writes. The
poor write performance on NFS can be attributed to its
locking protocol. The large amount of variability observed
is a result of network contention for the single network in-
terface on the server side.

4.2 Parallel Access to Scientific Data Formats
over the Grid

There are two widely used “standard” formats for
portable, annotatable scientific data storage: HDF [16]
and NetCDF [23]. Both of these have parallel I/O inter-
faces built on top of MPI-I/O; the HDF5 library has an
MPI-I/O interface included with it [15], while a separate
library for parallel access to Netcdf files has been devel-
oped by Argonne National Laboratory and Noprthwestern
University [12]. Experiences with using these parallel in-
terfaces over GridFTP were mixed. The HDF5 parallel
interface relies heavily on MPI File set atomic(),
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and as a result it does not work well with GridFTP (or
NFS, for that matter). Parallel NetCDF, on the other hand,
works quite well over GridFTP.

A parallel application that uses both HDF5 and parallel
NetCDF is the ASCI FLASH code from the University of
Chicago [24]. This application has such heavy parallel I/O
requirements that its I/O behavior has been made into a
benchmark [26, 19]. The original FLASH I/O benchmark
used HDF5’s parallel interface; however, recent versions
have used parallel NetCDF as well [4]. Figure 5 compares
the checkpoint performance of the parallel NetCDF ver-
sion of the FLASH I/O benchmark on the BALE cluster
using GridFTP and NFS over 100 Mbit/s Ethernet. As in
the case of ROMIO perf writes with buffer sync, NFS
performance drops owing to lock contention; GridFTP
performance is lower overall but more consistent.

4.3 An Application in Wide-Area Parallel Com-
puting

Despite the limitations on writing files through NAT
firewalls, using MPI-I/O over GridFTP on compute nodes
in private networks such as those used by OSC and the
Cluster Ohio grid still has significant applications. For
instance, to facilitate using the Cluster Ohio grid envi-
ronment for genome sequence alignment calculations, re-
searchers at the Ohio State University wrote a wrapper
around the popular tool BLAST that performs queries
in parallel. MpiBLAST [11] uses MPICH-G2 with a
worker-slave paradigm to farm out a set of queries against
the same search database across multiple worker nodes.
Both the input queries and the databases are accessed by
the nodes using MPI-I/O. In several cases, the input and
database files were referenced using GridFTP URLs to en-
able transparent remote access of a central data repository.
Thus, MpiBLAST users could run the code anywhere in
the grid using any sequence database without needing to
first pre-stage the data to each potential compute node.

5. Conclusions and Future Directions

We have demonstrated that GridFTP can be used to im-
plement the majority of the MPI-2 I/O interface. By using
MPI-I/O for data access, developers of grid applications
can reuse significant amounts of existing code, especially
for shared read-only access to standardized scientific data
formats like NetCDF. While GridFTP performance is of-
ten lower than that of NFS on the same network, it has the
added benefits of better security (using GSI) and a lower
performance penalty for simultaneous shared access from
multiple clients. We are submitting a patch for this func-

tionality to the ROMIO developers, so that it may be in-
cluded in future version of ROMIO.

Future work will focus primarily on two areas: strided
reads and non-blocking I/O operations. The current im-
plementation’s approach to strided reads does not scale
to applications that need small, discontiguous portions of
large data sets; a set of heuristics needs to be added to
switch to doing multiple GridFTP read transactions, based
on the ratio of the size of the data being read to the size of
the extent in which that data lies. We also need to better
support non-blocking I/O operations using the operation
queue concept described earlier.
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