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Abstract

Field-Programmable Gate Arrays (FPGAs) are be-
ing employed in high performance computing systems
owing to their potential to accelerate a wide variety
of long-running routines. Parallel FPGA-based de-
signs often yield a very high speedup. Applications us-
ing these designs on reconfigurable supercomputers in-
volve software on the system managing computation on
the FPGA. To extract maximum performance from an
FPGA design at the application level, it becomes neces-
sary to minimize associated data movement costs on the
system. We address this hardware/software integration
challenge in the context of the All-Pairs Shortest-Paths
(APSP) problem in a directed graph. We employ a par-
allel FPGA-based design using a blocked algorithm to
solve large instances of APSP. With appropriate design
choices and optimizations, experimental results on the
Cray XD1 show that the FPGA-based implementation
sustains an application-level speedup of 15 over an op-
timized CPU-based implementation.

1. Introduction

Field-Programmable Gate Arrays (FPGAs) have
long been used in embedded image and signal process-
ing applications. With rapid advances in modern VLSI
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technology, FPGAs are becoming increasingly attrac-
tive to a much wider audience, in particular, to the High
Performance Computing (HPC) community. Modern
FPGAs have abundant resources in the form of tens
of thousands of Configurable Logic Blocks (CLBs), a
large amount of on-chip memory, and growing num-
bers of other special-purpose resources. High band-
width to off-chip memory is sustained through paral-
lel memory access using the large number of I/O pins
available on-chip. All of these factors allow FPGAs to
extract a large amount of parallelism apart from effec-
tively reusing data. Reconfigurability allows very ef-
ficient use of available resources tailored to the needs
of an application. This makes it possible for custom-
designed parallel FPGA implementations to achieve
significant speedup over modern general-purpose pro-
cessors for many long-running routines. This increase
in performance has led to the use of FPGAs in HPC sys-
tems. Cray and SRC Computers already offer FPGA-
based high-performance computer systems that couple
general-purpose processors with reconfigurable appli-
cation accelerators [3, 9].

A complete FPGA-based solution on reconfigurable
supercomputers like the Cray XD1 involves an FPGA
design integrated with a user-application running on the
system. Limited resources on the FPGA often necessi-
tate a blocked algorithm for the problem. This is par-
ticularly true for many linear algebra routines [16, 17].
Large instances of a problem are solved by employing
a parallel FPGA design iteratively with a blocked al-



gorithm. Parallel FPGA designs often yield significant
speedup. Therefore, in many cases, it becomes impor-
tant to orchestrate movement of subsets of data (tiles)
so that benefits are reflected at the application level.
For some scientific routines involving double-precision
floating-point arithmetic, performance of current day
FPGAs may not be high enough to make system-side
optimizations crucial. However, with current trends
in double-precision floating-point performance of FP-
GAs [11, 12], FPGA performance would eventually
reach a level to make these optimizations beneficial for
all FPGA-based routines.

The all-pairs shortest-paths problem is to find a
shortest path between each pair of vertices in a weighted
directed graph. The Floyd-Warshall (FW) algorithm
used to solve this problem involves nested loop code
that exhibits a regular access pattern with significant
data dependences. In the context of FW, we propose
approaches that solve the following problem: given an
FPGA kernel that achieves a high speedup on a small
dataset (tile/block), what optimizations at the system
would help obtain a high percentage of this speedup
at the application level for large problem sizes? The
parallel kernel we use is from our previous work [1].
With appropriate design choices and optimizations, we
show through experimental results on the Cray XD1
that the application-level speedup for FPGA-based FW
improves from 4 to 15. We build a model that accurately
captures performance of the FPGA-based implementa-
tion, and provides insights into factors affecting it.

The rest of this paper is organized as follows: In Sec-
tion 3, we give an overview of the Cray XD1 followed
by an overview of the FW algorithm, and the FPGA-
based FW design developed in [1]. In sections 4 and 5,
we discuss design choices and propose techniques to re-
duce data movement costs on the system. In Section 6,
we present results of our experiments on the Cray XD1
and analyze performance in detail.

2. Related work

The Floyd-Warshall algorithm was first proposed by
Robert Floyd [5]. Floyd based his algorithm on a theo-
rem of Warshall [14] that describes how to compute the
transitive closure of boolean matrices. Venkataraman et
al. proposed a blocked implementation of the algorithm
to optimize it for the cache hierarchy of modern proces-
sors [13].

Apart from the Floyd-Warshall algorithm, all-pairs
shortest-paths (APSP) algorithms with lower time com-
plexity exist. Karger [6] solved undirected APSP with
non-negative edge-weights in O(Mn + n2 logn) time,
where n is the number of vertices in the graph and M is

the the number of edges participating in shortest-paths.
Zwick [8] obtained an O(n2.575) APSP algorithm where
the dependence of the running time is polynomial in the
maximum magnitude of the edge weights. It is thus only
effective when the edge weights are integers of small
absolute value.

Researchers have recently demonstrated the compet-
itiveness of FPGAs with modern microprocessors for
double-precision floating-point arithmetic and linear al-
gebra routines [11, 12, 16, 17]. All of these works pro-
pose parallel designs and project performance. Tripp et
al. [10] study aspects of hardware/software integration
on reconfigurable supercomputers with a traffic simula-
tion FPGA kernel. Our work addresses optimizing data
movement, and other issues that often arise in mapping
nested loops.

In [1], we proposed a parallel FPGA-based design
for FW to process a tile efficiently; the kernel is suit-
able for accelerated solution of large APSP problem in-
stances using a blocked algorithm [13].

3. Overview

In this section, we give an overview of the Cray XD1
system, the Floyd-Warshall (FW) algorithm, the paral-
lel FPGA-based FW kernel, and the blocked FW algo-
rithm.

3.1 Cray XD1

The Cray XD1 system is composed of multiple
chassis, each containing up to six compute blades.
Each compute blade contains two single- or dual-core
64-bit AMD Opteron processors, a RapidArray pro-
cessor which provides two 2 GB/s RapidArray links
to the switch fabric, and an application acceleration
module [3]. The application acceleration module is
an FPGA-based reconfigurable computing module that
provides an FPGA complemented with a RapidArray
Transport (RT) core providing a programmable clock
source, and four banks of Quad Data Rate (QDR) II
SRAM.
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Figure 1. The Cray XD1 system



3.2 The Floyd-Warshall algorithm

Given a weighted, directed graph G = (V,E) with a
weight function {w : E → R}, that maps edges to real-
valued weights, we wish to find, for every pair of ver-
tices u, v ∈V , a shortest (least-weight) path from u to v,
where the weight of a path is the sum of the weights of
its constituent edges. Output is typically desired in tab-
ular form: the entry in u’s row and v’s column should
be the weight of a shortest path from u to v.

1: for k← 1,N do
2: for i← 1,N do
3: for j← 1,N do
4: d[i, j]← min (d[i, j], d[i,k]+d[k, j])
5: end for
6: end for
7: end for
8: Output: d

Figure 2. The Floyd-Warshall algorithm

The Floyd-Warshall algorithm uses a dynamic pro-
gramming approach to solve the all-pairs shortest-paths
problem on a directed graph [2, 5, 14]. It runs in
Θ(|V |3) time.

Let wi j be the weight of edge (i, j). wi j is 0 when
i = j, and is ∞ when (i, j) /∈ E. Let d(k)

i j be the weight
of a shortest path from vertex i to vertex j for which
all intermediate vertices are in the set {1,2, . . . ,k}. For
k = 0, we have d0

i j = wi j. A recursive definition from
the above formulation is given by:

dk
i j =

{
wi j if k = 0

min
(

dk−1
i j , dk−1

ik +dk−1
k j

)
if k ≥ 1

The matrix {dN
i j}, 1≤ i, j≤N gives the final result. The

above recursive definition can be written as a bottom-up
procedure as shown in Fig. 2. The code is tight with no
elaborate data structures, and so the constant hidden in
the Θ-notation is small. Unlike many graph algorithms,
the absence of the need to implement any complex ab-
stract data types makes FW a good candidate for accel-
eration with an FPGA.

3.3 Parallel FW design for a blocked algorithm

In this section, we give a brief description of the par-
allel FPGA-based FW kernel that we designed in [1].

In the FW computation, we have exactly N2 data el-
ements, but Θ(N3) computations to perform. Hence,
there is high temporal locality that a custom design can
exploit. The FW nested loop code has significant data
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Figure 3. Parallel FW kernel architecture

dependences. Extracting parallelism in the presence of
these dependences without data access conflicts making
maximum use of available FPGA resources is a major
challenge.

Let d be the distance matrix of a directed graph of
B nodes. In the nested loop code shown in Fig. 2, at
any iteration k = r of the outer loop, the vectors, d[r,∗]
and d[∗,r], update the whole matrix d. We call this
row and column, the pivot row and the pivot column,
respectively. In order to extract parallelism from the
outermost k loop, the computation was reorganized into
a sequence of two passes: in the first pass, compute the
set of pivot rows and columns, and then use the stored
pivot rows/columns to compute the updates to matrix
elements in a streamed fashion. This approach enabled
the creation of a simple and modular design that max-
imizes parallelism. The design scales well when – (1)
larger FPGAs are employed, or (2) greater I/O band-
width to the system is available.

Fig. 3 shows the architecture. A linear array of B PEs
is used to perform FW on a BxB matrix. Each PE has l
operators where each operator comprises a comparator
and an adder. The rth PE stores the rth pre-computed
pivot row and column, and the work it performs corre-
sponds to the computation in the iteration k = r of the
outer loop of FW. The first and the last PEs read and
write data respectively, from/to the I/O engine. The de-
sign is a streaming one, with read, compute and write
pipelined. The latency to process a single tile is given
by:

L =
(

3B2

l
+3B−1

)
cycles

l is the amount of doAll parallelism in each PE and
is governed by I/O bandwidth. B is the amount of
pipelined parallelism and is constrained by the amount
of FPGA resources. The product of B and l is the total
parallelism available in our design, and this was maxi-
mized under resources constraints using a model.

The FW kernel described above can handle only ma-
trices of size BxB. For the general case of NxN ma-
trices, we extend the kernel for the blocked algorithm
proposed by Venkataraman et al. [13]. We provide a
brief description of the same here.
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Figure 4. Tiled FW algorithm

Consider the sequential code in Fig. 2. At each iter-
ation of the outermost loop, each element in the entire
matrix is updated (if necessary) to the sum of its pro-
jections onto the pivot row and pivot column for that
iteration. Now, consider the matrix to be composed of
BxB tiles as opposed to individual elements so that there
are (N/B)2 tiles, and consider a similar operation being
performed on these tiles. In this case, we have an en-
tire tile that needs to be updated by the projection of its
elements onto pivot rows and columns that come from
a pivot row-block (d[t . . . t + B−1][1 . . .N]) and a pivot
column block (d[1 . . .N][t . . . t + B− 1]) for the outer-
most loop k = t to t +B−1. The pivot rows and columns
used to update a particular tile may – (1) come from
the same tile (self-dependent), (2) only the pivot rows
come from a different tile (partially row-dependent), (3)
only the pivot columns come from a different tile (par-
tially column-dependent), or (4) both the pivot rows and
the pivot columns come from different tiles (doubly-
dependent). Fig. 4 shows these different types of tiles
for a single round. The partially row/column-dependent
tiles require the self-dependent tile to be processed first.
Similarly, the doubly-dependent tiles depend on the
row-dependent and column-dependent tiles (Fig. 4). In
each of the N/B rounds, we process (N/B)2 tiles using
the FPGA design. Hence, a total of (N/B)3 tiles are pro-
cessed for an NxN matrix. The design described in the
previous section is used for processing self-dependent
tiles; it was extended to process the other three kinds of
tiles with minor changes.

Table 1. FPGA-FW: Resource utilization
and speedup on the Xilinx XC2VP50.

Tile
Size

FPGA-FW
measured

CPU-FW Measured
speedup

Resource
utilization

8x8 0.42 µs 1.60 µs 3.8x 34%
16x16 1.29 µs 14.1 µs 11x 52%
32x32 4.84 µs 106.5 µs 22x 90%

The optimal values for B and l for the XD1 FPGA
(Xilinx XC2VP50) were determined to be 32 and 4 re-
spectively, for a precision of 16 bits. Table 1 shows
the speedup of the FPGA kernel for processing a single
tile.

4. Hardware/software Integration

In this section, we discuss some of the design and
implementation issues in integrating the parallel FPGA
kernel with software on the system.

4.1 Extending for any graph size

With the approach described in the previous section,
we can handle a graph with a multiple of kernel tile
size number of nodes. Any arbitrary size can be triv-
ially solved by padding the distance matrix with ∞ (the
largest value within the supported precision) to the next
higher multiple of tile size. This is equivalent to adding
additional disconnected nodes to the graph.

4.2 Data movement and communication

A specially allocated communication buffer that is
pinned to the system’s memory is used for transfer of
data to/from the FPGA. The I/O engine (Fig. 3) on the
FPGA transfers data of specified length to/from con-
tiguous regions in the communication buffer. We split
the buffer into two parts as shown in Fig. 5. The source
and destination buffer addresses, amount of data to be
transferred to/from these buffers, and the type of tile
that is to be processed is communicated using a special
set of registers. A write to the register meant for the
destination buffer address triggers the computation on
the FPGA. Completion is indicated by setting a regis-
ter bit on the FPGA which the CPU polls. All of this
overhead is incurred for each compute request made to
the FPGA. Once the computation starts, all of the tiles
placed in the source buffer are processed successively.
As the computation for successive tiles is overlapped
in the FPGA design (Sec. 3.3), the overhead associated
with making the compute request is hidden when a large
enough number of tiles are processed successively.

Allowing the FPGA to do the read and write from
the communication buffer on the system’s memory frees
the CPU for other tasks. In particular, it provides us the
opportunity to use the CPU to copy tiles between the
matrix and the communication buffer while the FPGA
is computing. We discuss this in Sec. 5.2.

The parallel FPGA kernel described in Sec. 3.3 was
used iteratively taking care of dependences. All tiles
of a particular kind (self-dependent, partial row/column



Destination
FPGA
(push)

To FPGA
(pull)

buffer

Copy Tiles
Matrix

on system
Communication buffer

From

3X

X

buffer
Source

Figure 5. Communication buffer model

dependent and doubly-dependent) are processed suc-
cessively. Hence, in each of the N/B rounds of the
blocked algorithm, the self-dependent tile is processed
first followed by the sets of partially row and column-
dependent tiles. This is followed by the processing of
doubly-dependent tiles. In order to process a tile, the
tile along with the pivot row and column elements is
copied to the source buffer on the system interleaved
in the fashion required by the kernel (Sec. 3.3). The
compute request is then made to the FPGA. Hence, for
a set of k BxB tiles that need to be processed succes-
sively, 3B2k matrix elements are copied to the source
buffer by the CPU. The FPGA reads from the source
buffer and writes back the result tiles comprising B2k
elements to the destination buffer, and sets the comple-
tion flag. The result tiles are then copied back to the
matrix by the CPU. The number of copy operations for
an NxN matrix are therefore 4N3/B, where each oper-
ation involves a distance matrix element. It is the time
consumed in these copies between the matrix and the
source/destination buffers that we try to minimize.

5. Optimizing data movement

In this section, we discuss optimizations on the
system-side to extract maximum performance from the
FPGA kernel. The optimizations are partly model-
driven and partly from analysis of measured perfor-
mance of the unoptimized version which we refer to
as FPGA-FW. In FPGA-FW, the three phases of copy,
compute and write-back are done sequentially with the
distance matrix in the original row-major form.

The entire blocked FW for an NxN matrix comprises
(N/B)3 tiled computations. Each of the BxB tiles in the
matrix gets processed N/B times – once in each round.
Hence, temporal locality can be exploited for copying
across rounds.

The copy time is proportional to the square of the
tile size (B), while the number of compute operations is
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Θ(B3). However, due to the FPGA kernel performing
these operations in parallel, the compute time may be
reduced to a level where it is comparable to the copy
time. This makes several approaches that would reduce
or hide the data movement costs beneficial to pursue.

5.1 Layout transformation

In FPGA-FW, significant conflict misses occur as
successive rows of a tile may get mapped to the same
cache line due to size of the matrices being large and a
power of two. Fig. 6 confirms this. This leads to loss of
temporal locality across multiple rounds of the blocked
algorithm. For column-wise copying, apart from tem-
poral locality, spatial locality may be lost too. In ad-
dition, if the size of the cache line is greater than the
size of a single row of the tile as is the case for 8x8 and
16x16 kernels, memory bandwidth is not effectively uti-
lized. We therefore transform the layout of the input
matrix so that BxB tiles of the matrix are contiguous in
memory in row-major order (Fig. 7).

After the layout transformation, the number of cache
misses per BxB tile for row-wise as well as column-wise
copying is exactly B2/L, where L is the cache line size.

B

B

Figure 7. Transforming the layout of the
distance matrix



This is true for large matrices that are at least twice as
large as the cache size. The cost of transforming the
layout of the matrix is a small fraction of the FW latency
and does not affect performance. Padding the distance
matrix is another alternative, but is not as effective as
layout transformation (Sec. 6).

5.2 Compute/Copy overlap

Even after performing the layout transformation, the
compute time may be comparable to the copy time for
matrices that do not completely fit in the cache. As
we make the FPGA responsible for transferring data
between itself and the communication buffer, the host
is free while the FPGA is computing. We overlap the
FPGA computation for a set of k tiles with the write-
back time and the copy time for the previous and next
sets respectively. Two buffers are used in an alternating
fashion (each for a maximum of k tiles). We perform the
compute/copy overlap only for doubly-dependent tiles
as the processing of these tiles dominates the compute
latency for the 32x32 FPGA kernel (Fig. 4).

Optimal overlap chunk: Choosing a small chunk
size (k) for compute/copy overlap would not hide over-
head that is involved in requesting the FPGA to process
a set of tiles. Using a large chunk size would increase
the trailing non-overlapping copy and write-back time
(the first copy and the last write-back cannot be hidden).
The optimal value for the compute/copy overlap chunk,
k, is higher for larger matrices. We determine this in the
next section.

6. Measurements and analysis

The measurements for the general-purpose proces-
sor case were taken on a 2.2 GHz 64-bit AMD Opteron
(as found on the XD1) with a 64 KB L1 data cache and
a 1 MB L2 cache with a cache-block size of 64 bytes.
GCC 3.3 with “-O3” turned on was used for compila-
tion. The FPGA on the XD1 is a Xilinx Virtex-II Pro
XC2VP50. The FPGA design was clocked at 170 MHz.
The version of Cray User FPGA API used was 1.3. The
API provides functions to program the FPGA, write val-
ues and addresses to registers on the FPGA, taking care
of virtual to physical address translation in the latter
case. All measurements are for 16-bit edge weights.
We use the following abbreviations to identify CPU and
FPGA-based FW implementations with different opti-
mizations throughout this section.

CPU-FW: Simple Floyd-Warshall (FW) implementa-
tion on the Opteron (three-way nested loop shown
in Fig. 2).

CPU-FW-OPT: Optimized blocked implementation
of FW on the Opteron (block size empirically op-
timized for best performance) [13]. We copy tiles
to a contiguous buffer to eliminate conflict misses.

FPGA-FW: FPGA-based implementation for FW for
an NxN matrix on the XD1 FPGA without any op-
timizations.

FPGA-FW-LT: FPGA-FW with layout transforma-
tion as explained in Sec. 5.1.

FPGA-FW-LTOV: FPGA-FW-LT with compute and
copy overlapped as explained in Sec. 5.2.

A suffix of 8, 16, or 32 is used to distinguish implemen-
tations using kernels that process tiles of that size. In
all figures and tables, copy time refers to the sum to-
tal of both, the copy time and the write-back time. All
speedups mentioned in this section are over the opti-
mized CPU implementation (CPU-FW-OPT).

For graphs with up to 256 nodes, the distance matrix
and the communication buffer completely fit in the L2
cache (2562x2x5 bytes < 1 MB). Hence, FPGA-FW,
FPGA-FW-LT and FPGA-FW-LTOV perform equally
well as seen in Table 2. However, there is a sudden in-
crease in copy time from 256 nodes to 512 nodes, and
performance drops from there on for FPGA-FW and
FPGA-FW-LT (Fig. 10).

6.1 Effect of Layout Transformation

By operating on the bricked layout of the distance
matrix, we find that the copy time for large graphs is
cut down by more than two times. As shown in Table 2,
the copy time for FPGA-FW-LT increases consistently
by eight times as the size of the problem doubles, as
opposed to the way it does for FPGA-FW. This is along
expected lines (Sec. 4.2).

6.2 Effect of compute/copy overlap

Even after the layout transformation, for graphs with
512 nodes or more, the copy time is comparable to the
compute time. The compute/copy overlap thus leads to
a speedup by a factor of two hiding the copy time com-
pletely (Fig. 8). For the size of the overlap chunk (dis-
cussed in Sec. 5.2), empirically we find that a value of
32 works well for most problem sizes (Fig. 9). Thus, the
total communication buffer requirements (including the
alternating buffer) are: 2∗4∗k∗B2 ∗2 bytes = 512 KB.

For CPU-FW-OPT, the copy time is a very small
fraction of the total latency (about 1%) for all problem
sizes (Table 3). The compute and copy times for CPU-
FW-OPT increase along expected lines (proportional to



Table 2. Latency breakdown for 32x32 FPGA kernel with various optimizations

Size FPGA-FW-32 FPGA-FW-LT-32 FPGA-FW-LTOV-32
Compute Copy Total Compute Copy Total Compute Copy Total

256 3.61ms 1.41ms 5.02ms 3.66ms 1.40ms 5.07ms 3.66ms 0.43ms 4.60ms
512 27.86ms 23.48ms 53.36ms 27.87ms 22.58ms 50.46ms 28.68ms 1.29ms 31.05ms

1024 0.22s 0.21s 0.43s 0.22s 0.19s 0.41s 0.23s 0.01s 0.24s
2048 1.74s 3.01s 4.75s 1.75s 1.80s 3.56s 1.78s 0.03s 1.82s
4096 14.02s 28.75s 42.77s 14.02s 14.40s 28.43s 14.39s 0.14s 14.55s
8192 112.06s 282.20s 394.27s 112.09s 115.80s 227.89s 115.25s 0.68s 115.98s

Table 3. Measured performance: comparison with CPU-FW-OPT

Size CPU-FW-OPT FPGA-FW-LTOV-32 Speedup
Compute Copy Total Compute Copy Total

256 69.6ms 0.6ms 70.2ms 3.7ms 0.4ms 4.6ms 15.2x
512 480.5ms 5.5ms 485.9ms 28.7ms 1.3ms 31.0ms 15.7x

1024 3.63s 0.05s 3.67s 0.23s 0.01s 0.24s 15.7x
2048 28.04s 0.33s 28.37s 1.78s 0.03s 1.82s 15.6x
4096 220.02s 2.86s 222.89s 14.39s 0.14s 14.55s 15.3x
8192 1739.71s 21.73s 1761.44s 115.25s 0.68s 115.98s 15.2x
16384 13810s 171s 3 hrs 53 min 915s 2.94s 15 min 15.2x
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the cube of the problem size). As shown in Fig. 10 and
Table 3, after all optimizations, a speedup of 15 is ob-
tained for graphs with 256 nodes or more. For graphs
with less than 256 nodes, the speedup is on the lower
side due to the fact that there are not large enough num-
ber of tiles to be successively processed in each round
to cover the overhead of making a compute request to
the FPGA.

Fig. 11 shows the final speedup for all problem sizes
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obtained by employing the optimized 8x8, 16x16, and
32x32 FPGA kernels. The measured speedup doubles
when the tile size that is processed in parallel doubles,
as we have double the number of parallel operators then.

Fig. 12 shows the read bandwidth that the FPGA-
based design obtains over the interconnect. For every
BxB tile that is processed, 3B2 16-bit matrix elements
are streamed to the FPGA, and B2 matrix elements
are written back. Read, compute, and write are fully
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pipelined. Hence, the read bandwidth that the FPGA
kernel obtains is calculated as:

Read b/w =
6N3

B∗ (Compute time for N nodes)
B/s (1)

It is important to note that overlapping copying of
tiles with the FPGA computation does not lead to a
significant drop in memory bandwidth available to the
host. As the FPGA computation contends with the copy
operations for the memory bus (Fig. 1), the compute
time for FPGA-FW-LTOV-32 is marginally higher than
that of FPGA-FW-LT (Table 2).

6.3 Performance model

We build a model to project performance for larger
FPGAs, and when higher bandwidth from the system
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Figure 12. Measured read bandwidth from
the XD1 to the FPGA kernel

to the FPGA is available. Let us define the following:

toh : overhead for processing a set of tiles successively
tc : compute time for a BxB tile
tcp : copy time (to source buffer) for a BxB tile
twb: write-back time for a BxB result tile
k : overlap chunk size (number of tiles)

As the overhead for making a compute request to the
FPGA is incurred four times in each of the N/B rounds
(once for each type of tile), the latency for processing
an NxN matrix without overlap is given by:

Lno−ov =
(

4N
B

)
toh +

(
N
B

)3

(tcp + tc + twb) (2)

We determine: tc = 6.68 µs, tcp + twb = 7.1 µs, and
toh = 9.9 µs, for B = 32. With compute and copy over-
lapped for doubly-dependent tiles, the latency is given
by:

Lov =

(
3N
B

+
(

N
B
−1
)2 N

B∗ k

)
toh + k (tcp + twb)

+
(

N
B

)3

∗max(tc, twb + tcp) (3)

Note that tc ∝ (B2/l) (Eqn. 1), and tcp, twb ∝ B2. We
compare the latencies obtained from the above equation
for different problem and kernel sizes in Fig. 13 and
Fig. 14 respectively. Note that l is 4 for all the three
kernels.
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Figure 13. Measured vs. Modeled latency
for FPGA-FW-LTOV-32 (Eqn.3)
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8192 nodes with various kernels: Mea-
sured vs. Model (Eqn. 3)

6.4 Impact of I/O bandwidth and FPGA re-
sources

The number of elements copied during FPGA-based
FW on an NxN matrix is 4N3/B. A larger tile size
would lead to the complete matrix getting processed in
terms of larger blocks, and so fewer copies. An increase
in FPGA area would increase the tile size that would
be processed in parallel (B). Thus, a higher value of B
would reduce both, the compute time (due to pipelined
parallelism) and copy time. An increase in I/O band-
width improves only the compute time as a result of
higher doAll parallelism in each PE. Therefore, an in-
crease in I/O bandwidth from the system to the FPGA
would not help our application beyond a certain point
where the compute time reaches the level of data move-
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Figure 15. Impact of FPGA-System Band-
width and FPGA resources on FPGA-FW-
LTOV for 8192 nodes: Eqn. 3

ment costs on the system. In fact, with our design on the
XC2VP50, and with the bandwidth we obtain, we reach
this point for larger graphs. We use the model built in
the previous section to illustrate this effect in Fig. 15:
greater I/O bandwidth beyond a certain point would be
desirable only if more FPGA resources are available.

6.5 Performance improvement on a real
dataset

Dynamic Transitive Closure Analysis (DTCA) is a
recent algorithmic development for analysis of interac-
tion and similarity networks of biological systems [15].
Although the method was developed to evaluate undi-
rected graphs representing large gene-drug interaction
networks in the study of cancer, it can be used to eval-
uate any large interaction network. The method in-
corporates repeated all-pairs shortest-paths evaluations,
which are a computational bottleneck for analysis of
very large networks.

A scalable implementation of the DTCA algorithm
was implemented in a software program called Galaxy
as part of the Ohio Biosciences Library [4, 7]. Read-
ing in microarray expression data for several genes and
drugs, the program utilizes the Floyd-Warshall (FW) al-
gorithm to evaluate for closure on multiple subgraphs
of the original interaction network. The vertices of the
graph represent either genes or drugs under investiga-
tion in the study of new therapies for treating cancer.
The weight of an edge in the graph is calculated using
the co-correlation value computed between each pair of
vertices using the microarray expression data provided
for each gene and drug involved in the study. The dis-
tance used for each edge is 1− c2, where c is the com-



puted co-correlation value.
For the application described above, all edge-

weights are fractions between 0 and 1, with an accu-
racy up to three places of decimal desired. Hence, all
of these weights can be scaled to integers between 0
and 1000 making a precision of ten bits sufficient. We
particularly consider a large instance of this problem –
a graph with 22,740 nodes with FW called 100 times.
The runtime for this particular instance is 21 days on
the Cray X1 (using eight vector pipes on an MSP), and
43 days on the Opteron. With FPGA-FW-LTOV-32, the
running time is reduced to 2 3

4 days.

7. Conclusions

In this paper, we developed optimizations that enable
high application-level speedup for blocked algorithms
employing parallel FPGA kernels. Using a parallel
FPGA-based Floyd-Warshall design developed in [1],
the proposed optimizations minimize system-size data
movement costs to effectively solve large instances of
the all-pairs shortest-paths problem on a reconfigurable
supercomputer. On the Cray XD1, these optimizations
improve the application-level speedup of the FPGA-
based implementation from 4 to 15. A model was devel-
oped to accurately characterize the latency of the opti-
mized FPGA-based implementation and provide an in-
sight into the impact of memory bandwidth and FPGA
resources on the achieved speedup. The techniques de-
veloped apply to other blocked FPGA-accelerated rou-
tines for which the speedup with the FPGA kernel is
high enough to make orchestrating movement of data
on the system critical. With the current trends in FPGA
and CPU performance, these approaches would become
increasingly important for most FPGA-based routines
on reconfigurable supercomputers.
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