
BMI: A Network Abstraction Layer for Parallel I/O

Philip Carns
Parallel Architecture Research Laboratory

Clemson University
Clemson, SC

pcarns@parl.clemson.edu

Robert Ross
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL

rross@mcs.anl.gov

Walter Ligon III
Parallel Architecture Research Laboratory

Clemson University
Clemson, SC

walt@parl.clemson.edu

Pete Wyckoff
Ohio Supercomputer Center

Columbus, OH
pw@osc.edu

Abstract

As high-performance computing increases in popularity
and performance, the demand for similarly capable input
and output systems rises. Parallel I/O takes advantage of
many data server machines to provide linearly scaling per-
formance to parallel applications that access storage over
the system area network. The demands placed on the net-
work by a parallel storage system are considerably different
than those imposed by message-passing algorithms or data-
center operations; and, there are many popular and varied
networks in use in modern parallel machines. These consid-
erations lead us to develop a network abstraction layer for
parallel I/O which is efficient and thread-safe, provides op-
erations specifically required for I/O processing, and sup-
ports multiple networks. The Buffered Message Interface
(BMI) has low processor overhead, minimal impact on la-
tency, and can improve throughput for parallel file system
workloads by as much as 40% compared to other more
generic network abstractions.

1. Introduction

Parallel I/O has become an increasingly important aspect
of high performance computing, especially as advances in
processing power have steadily outpaced advances in disk
throughput. In recent years, parallel computers, including
commodity clusters in particular, are being scaled dramat-
ically in order to meet the need for greater computing re-
sources. Parallel I/O throughput must scale accordingly to

insure that these systems perform well for real world appli-
cations.

These circumstances have led to renewed research inter-
est in the area of scalable file systems for parallel appli-
cations. In particular, new file systems such as the Parallel
Virtual File System 2 (PVFS2) [12] have been created with
the intention of addressing the needs of next generation sys-
tems. PVFS2 focuses on insuring robust, scalable operation
while keeping the infrastructure flexible enough to adapt to
new technologies. Several components are necessary in or-
der to make this happen. One such component is an efficient
network abstraction layer that allows a file system to oper-
ate transparently on top of a variety of interconnection net-
works. Many general purpose network abstractions already
exist for high performance computing, but none have been
tailored explicitly to the unique requirements of the paral-
lel I/O domain.

In this paper, we first present an overview of PVFS2 to
serve as background for the problem domain. We then de-
scribe why a special purpose network abstraction is neces-
sary for parallel I/O. Section 2 introduces the Buffered Mes-
sage Interface (BMI) as a solution to this problem, focus-
ing on how it meets the challenges of parallel I/O as stated
earlier. We will also offer examples of how it maps onto
real world PVFS2 operations. Section 3 briefly describes
the challenges involved in implementing support for vari-
ous networks. Section 4 provides preliminary performance
results of BMI over the GM protocol with a particular em-
phasis on network patterns common to PVFS2. Section 5
describes various related works and outlines why alterna-
tives to BMI are not suitable for the problem domain cov-
ered in this text. The paper ends with concluding statements

Clients running
applications

(100s−1000s)

I/O servers
(10s−100s)

...

...PVFS2 Server

Application

MPI−IO or Linux VFS

TCP/IP, Myrinet,
or InfiniBand Network

Figure 1. High level PVFS2 system diagram

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Client (Romio/VFS)

BMI Flows

State Machines

Job Interface

BMI Trove

System Interface

Job Interface

Interconnection Network

Flows

Storage HW

Server

Figure 2. Primary PVFS2 I/O components

and a summary of intended future work.

1.1. PVFS2

PVFS2 is a new file system design from the Parallel
Virtual File System project team. It incorporates lessons
learned from the original PVFS file system [4] and empha-
sizes the ability to adapt to new technology by way of a
highly modular infrastructure. PVFS2 uses a client/server
architecture, with both the server daemon and client side li-
braries residing fully in user space. There may be any num-
ber of servers, and each server may provide either meta-
data, file data, or both. Metadata refers to attributes such as
timestamps and permissions as well as file system specific
parameters. File data refers to the actual data stored in the
system. This data is distributed according to rules that are
selectable by the user. The default scheme is to stripe data
evenly in a similar manner to that of a RAID array. Meta-
data may also be distributed, though at the granularity level
of one server per individual file or directory.

A high level diagram of the PVFS2 system architecture
is shown in Figure 1. Note that there is no need for a shared
storage infrastructure; each server manages its own local
resources. The arrows represent communication within the
file system. There is no communication between servers or
between clients. Clients communicate exclusively with the
servers responsible for the resources that they wish to ac-
cess.

Figure 2 shows a diagram of the primary internal I/O
components of PVFS2. The lowest level network abstrac-
tion is provided by a component known as the Buffered
Message Interface [3]. The counterpart disk abstraction,
which provides both stream and key/value style access to lo-

cal storage resources on each server, is called Trove. These
two components are coordinated by Flows, which handle
buffering, scheduling, and datatype processing between net-
work and disk for bulk transfers. All of these components
(along with other peripheral components beyond the scope
of this paper) are coordinated by the Job interface, which
manages threading and provides a consistent interface for
testing of completion of any pending low-level I/O oper-
ation, regardless of which underlying component is ulti-
mately responsible for it. Both the servers and client li-
braries are implemented through the use of concurrent state
machines which operate on top of the Job interface.

The following list summarizes the critical requirements
that we have identified for a network abstraction layer in
this problem domain:

• efficiency: necessary to achieve the performance goals
of the file system

• parallel I/O access pattern support: to accommodate
the discontiguous and highly concurrent network ac-
cesses seen in parallel I/O workloads

• multiple concurrent networks: allows the file system to
operate on top of a variety of interconnects

• thread safety: to support high throughput multi-
threaded environments on file servers

• explicit buffer management: optionally take advantage
of user level or RDMA networks which manipulate
pinned memory regions

• client / server model: necessary for a dynamic applica-
tion and server interaction

• fault tolerance: ability to isolate network errors and in-
tegrate with file system level fault tolerance scheme

• minimal exposed state: to enhance scalability

• simple high level API: to reduce complexity of the file
system

2. The Buffered Message Interface

The Buffered Message Interface was designed to meet
the requirements for a parallel file system as outlined in the
previous section. It is a software component intended for
use by system level services. BMI uses a layered interface
model; it presents a high level API for BMI users while also
providing an internal device API for specific network im-
plementations. The latter interface eases the task of porting
to new network infrastructures. Each device resides in an in-
dependent module. In this section we will describe the de-
sign and implementation aspects of BMI that enable it to
accommodate the requirements of the parallel I/O problem
domain.

2.1. API

Many of the requirements listed in section 1.1 are met by
way of intelligent API decisions. BMI implements a non-
blocking interface for all network I/O operations. The basic
model is to firstpostan operation and thentest the opera-
tion until it is completed. Completion in this model refers
to local completion; it offers no guarantee of success on the
remote peer. The nonblocking interface allows many net-
work operations to be in service concurrently, each possibly
in a different stage of communication. Operations are refer-
enced by unique identifiers while they are in service.

BMI embraces the client/server model used by parallel
file systems through the use oftags and unexpected mes-
sages. Tags are integer parameters which can be used to
match messages exchanged as part of a single overall file
system operation. Normally, incoming messages are paired
with receive operations with the proper sender, size, and tag
parameters. Unexpected messages are an exception, how-
ever, in that they do not require a matching receive to be
posted. Instead, the receiver simply polls to check for new
unexpected messages. If such a message is found, then a de-
scriptor is filled in that describes the parameters of the mes-
sage and provides a pointer to the data buffer. This reduces
complexity on the server side because the server does not
have to anticipate buffer use in advance. Instead it can just
react to incoming messages and use them to initiate service
state machines.

The BMI API also allows multiple application or server
components to use the same interface concurrently. BMI
supports this foremost by being fully thread safe. Secondly,
it introducescontextsto help differentiate between indepen-
dent higher level callers. Each component that uses BMI
will receive its own unique context, which is local to that
host. This context can then be used to differentiate between
operations posted by each component, both at post time and
at test time. This allows components (or threads) to test for
completion of any pending operations without the risk of
receiving notification of completion for an operation posted
by a different component.

A clean separation of the module API and the user API
allows BMI to operate on top of a variety of network proto-
cols. New modules can be activated dynamically as needed.
The core BMI code multiplexes time between active mod-
ules to insure that progress is made on multiple networks if
they are used simultaneously.

The BMI API also strives to reduce complexity for com-
ponents which are built on top of it. There is no explicit
queue management. Receive buffers do not need to be
posted in advance of communication, though doing so will
improve performance for some networks. All BMI modules
must provide implicit flow control. Opaque address refer-
ences are resolved from human readable URL style refer-

ences. The syntax allows specification of multiple network
addresses for each host. These decisions isolate network
complexity from the core functionality of the parallel file
system.

2.2. Performance

BMI implements several features that are intended to im-
prove efficiency. Some of these are simply optimizations on
the basic API model outlined earlier. One important opti-
mization on the post and test model is that any post func-
tion may elect to indicateimmediate completionat post
time. Immediate completion means that the operation has
successfully finished during the execution of the post call;
therefore, no testing step is necessary. In some scenarios,
such as very small sends, or receives for which the data has
already been buffered, this will avoid the overhead of call-
ing an extra function to retrieve the status information.

Many modern user level network protocols as VIA [14]
or GM [11] rely on the use of message buffers that are
pinned into physical memory before transmission. BMI ac-
commodates this by providing functions for allocating and
releasing buffers that are optimized for use by BMI. The
use of these functions is optional, however, and BMI will
handle buffering internally if needed. This is important for
client library usage in which there is no opportunity to reg-
ister buffers in advance.

PVFS2 supports the use of arbitrary data types to de-
scribe patterns of offsets and sizes within a file. It also al-
lows data to be striped across an arbitrary number of hosts.
These two features lead to scenarios in which communica-
tion must be carried out from a set of many noncontigu-
ous buffers. BMI allows sets of noncontiguous buffers to
be sent or received in a single function call through the use
of list operations. List operations are similar to their tradi-
tional send and receive counterparts, except that they op-
erate on an array of memory offsets and sizes rather than
a single buffer. This can cut down drastically on the num-
ber of messages necessary to transfer a complex data pat-
tern between two hosts. Some BMI implementations may
directly support list operations and use hardware-provided
scatter/gather support to move the noncontiguous buffers.

2.3. Scalability

The ability to handle a large number of concurrently
posted operations is critical to file system scalability. The
user pointerfield associated with each operation is one fea-
ture designed to help in that regard. The user pointer is an
opaque value that may be set by the caller at post time. It is
returned unchanged to the caller when a test indicates com-
pletion. It provides a mechanism for the caller to map com-
pleted operations back to some higher level data structure

outside of BMI after calling a test function. For example,
on the server side it may map the operation back to a state
machine that tells the server what to do next. Thus, no mat-
ter how many operations are in flight, the originating func-
tion or data structure can be located for each completion
with O(1) complexity.

It is also important for scalability to insure that the caller
does not have to execute a test function separately for each
pending operation. This would consume too much CPU
time even with just a few posted operations. There are two
variations on the test function that overcome this problem.
One variation allows a single call to test for completion of
any of a set of specified operations. Another variation al-
lows a single call to test for completion of any previously
posted operation without specifying the operation identi-
fiers. This last function is significant because it prevents a
busy server or library from having to construct a list of op-
erations to test on; instead, it just checks for any possible
operation that may have completed in a single function call.

A final key to BMI API scalability is that it is connection-
less. There is no state to maintain for a given peer on the net-
work, and no connection to set up or tear down in prepara-
tion. This simplifies communication and aids in scalability
when communicating with thousands of hosts. Note that if
BMI is built on top of a network that uses a connection ori-
ented model, then BMI will manage the connections trans-
parently underneath the API, likely by caching previously
used connections in hope of later reuse.

2.4. Fault Tolerance

Clean handling of file system and network faults is nec-
essary for modern large scale file systems. BMI addresses
this issue by working in concert with fault handling capa-
bility at higher levels of the file system. For example, BMI
does not automatically retry transmission of failed network
messages. This is impractical in the general case because
network messages in parallel file systems are typically just
a single part of a larger multistep operation. Automatic re-
transmission at the network API level could lead to incon-
sistent requests if a server is restarted or fails over, or it
could simply lead to duplicate operations. For this reason,
BMI relies on the server or client libraries to determine the
appropriate retransmission points. It accommodates this de-
cision by preserving network address information and trans-
parently reconnecting or utilizing secondary network inter-
faces as needed. BMI also improves fault tolerance by pro-
viding the ability to cancel network operations that have
been posted but have not yet completed, therefore giving
higher level components a clean interface to handle time
out conditions.

3. BMI Module Implementation

BMI has been implemented and used extensively as the
networking foundation for the PVFS2 file system. BMI cur-
rently supports three different protocol modules: TCP/IP,
GM, and InfiniBand [1]. These three were chosen for the
initial implementation because they represent some of most
popular cluster interconnects and because they demonstrate
how to implement BMI modules for a variety of dissimi-
lar networks. We also sought to choose interconnects that
would help to validate the generality and efficiency of the
BMI model.

The TCP/IP module was implemented first, and posed
particular challenges. First of all, TCP/IP sockets are not
connectionless or message oriented, so these features had to
be emulated and hidden from the user. This is done with a
socket management layer that tracks existing sockets, opens
new ones as needed, and polls over them to determine when
to push more data. This socket management layer can op-
tionally utilize the Linux epoll() interface, when available,
to improve scalability with large numbers of open connec-
tions. All communication is done in nonblocking mode.
FIFO queues are used to preserve message ordering and in-
sure that message boundaries are observed. Small incom-
ing messages may be buffered on the receiving side, while
larger messages require that a receive is posted before data
begins transmitting in order to insure that adequate mem-
ory space is available.

The GM and InfiniBand modules are similar to each
other in many ways. The primary challenges for these pro-
tocols revolve around memory management. Both require
receives to be posted in advance, which leads to the use of
a combination of rendezvous and eager message modes [8],
as well as unique flow control schemes. Both also require
the use of pinned memory buffers, which must be handled
within the module if the caller does not provide regions that
are already pinned for communication. The GM module
uses a pool of internally registered memory buffers as in-
termediate areas for communication in this case. These in-
termediate buffers also provide a means to handle discon-
tiguous access by packing or unpacking during the memory
copy phase. The GM module makes use of the message pri-
ority facility in GM to differentiate control messages from
data payload messages, and uses FIFO queues to constrain
resource (memory or token) utilization.

4. Performance Results

In this section we analyze the performance of BMI for a
sampling of workloads that are relevant to the parallel I/O
domain. The TCP/IP module is the most mature and op-
timized of the three modules. However, the experiments in
this text will be carried out using the GM module in order to

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

R
ou

nd
 T

rip
 T

im
e

(u
s)

Message Size (Bytes)

BMI-GM
BMI-GM (pinned buffers)

MPICH-GM

Figure 3. Round trip latency with various
message sizes

reflect the performance typical of higher speed system area
networks. Our intent is to focus on high level BMI charac-
teristics rather than the nuances of individual modules. We
will use MPICH-GM as a reference point for comparison in
all experiments. MPICH-GM is a mature MPI implementa-
tion based on MPICH [8] that utilizes the GM API.

All tests were carried out using the Jazz Linux cluster at
Argonne National Laboratory. Each compute node consists
of a single Pentium Xeon 2.4 GHz with at least one gigabyte
of RAM. The nodes are connected by both a 100 Mb/s Eth-
ernet network and a 2 Gb/s Myrinet 2000 network. The sys-
tem software includes Linux kernel version 2.4.29, GNU C
library version 2.2.4, and MPICH-GM version 1.2.6..13b.
All test programs were compiled with gcc using “-O3” as
the only compiler switch.

The test programs were implemented from scratch be-
cause no existing network benchmarks are capable of exer-
cising the BMI application interface. The performance tests
are separated into two categories. The first category con-
sists of point-to-point comparisons between BMI and MPI.
The primary purpose of these tests is to establish the base-
line overhead introduced by the BMI in comparison to a
vendor optimized network abstraction. The second category
also compares BMI to MPI, but focuses on network patterns
that emulate the behavior of parallel file systems with mul-
tiple clients and servers.

4.1. Point-to-point Benchmarks

The first experiment measures the round trip latency of
both BMI-GM and MPICH-GM when using nonblocking
API functions. The round trip latency may give some in-
dication of the minimum time required to complete a re-
quest/acknowledgment pair in PVFS2 on a Myrinet net-

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 10 20 30 40 50 60

B
an

dw
id

th
 (M

B
/s

)

Message Size (KB)

BMI-GM
BMI-GM (pinned buffers)

MPICH-GM

Figure 4. Point-to-point bandwidth for 120 MB
transfer with various message sizes

work. Figure 3 shows the results of this benchmark as the
message size is varied from 24 to 1,200 bytes. This range
of message sizes reflects the typical range of request pro-
tocol messages exchanged by PVFS2. For BMI, we show
the results of experiments both with and without memory
buffers explicitly pinned in advance. MPICH does not pro-
vide an explicit mechanism for pinning memory buffers.

We see in these results that BMI-GM without explicit
memory management exhibits a round trip time that is 3 to
10 µs slower than MPICH-GM. This is because MPICH-
GM takes advantage of an internal memory registration
cache that allows it to avoid much of the overhead of mem-
ory deregistration or buffer copying during the duration of
the experiment. BMI-GM cannot leverage this technique
because it would conflict with the cache used by MPICH-
GM when the two are linked together. A shared cache used
by both components would be necessary in order to over-
come this implementation obstacle.

Fortunately, PVFS2 almost exclusively uses buffers that
have been registered in advance for request protocol com-
munication. All PVFS2 messages are encoded into an ar-
chitecture independent network format prior to transmis-
sion. This provides a convenient opportunity to place the
data into an optimized buffer. The results for BMI-GM
with pinned buffers more accurately represent this scenario.
In this case BMI-GM closely approximates the round trip
latency performance of MPICH-GM. For messages larger
than 700 Bytes the latencies are nearly identical.

The second experiment measures the bandwidth between
two hosts communicating via BMI or MPI. Nonblocking
calls are used in both cases. All sends and receives are
posted at the beginning of the test run. Figure 4 shows the
results of this test. The bandwidth is computed as the to-
tal amount of data transferred divided by the time required

to complete the transfer. This experiment may provide an
estimate for the upper limit on performance of an I/O oper-
ation between a single client and server in a PVFS2 file sys-
tem. However, it should be noted that PVFS2 defaults to us-
ing relatively large (at least 64 KB) messages for large con-
tiguous I/O operations.

Figure 4 reveals several interesting trends. First of all,
BMI-GM switches between eager and rendezvous mode
messaging at the 16 KB message size point, while MPICH-
GM switches at 32 KB. This accounts for the large through-
put changes at those points on the graph and may indicate
a potential tuning parameter for future BMI-GM experi-
ments. Once MPICH-GM and BMI-GM are both using ren-
dezvous mode, the BMI-GM implementation demonstrates
a performance improvement of over 50% even without ad-
vance registration of memory buffers. The results are much
different in eager mode. BMI-GM without explicit registra-
tion of memory regions is very erratic in eager mode. As
in the round trip latency measurements, the BMI-GM eager
mode bandwidth with registration comes close to the per-
formance of MPICH-GM but does not quite match it.

4.2. Parallel I/O communication patterns

Although the point to point experiments of section 4.1
are useful to some extent in measuring baseline perfor-
mance, they do not necessarily reflect the usage patterns
for which BMI was designed. To capture that environment,
we must use a benchmark that emulates the network pat-
terns seen in common parallel file system operations. We
therefore chose to construct a benchmark that replicates the
network activity resulting from a relatively large contigu-
ous parallel read from a set of file servers. The benchmark
can run on an arbitrary number of hosts which are divided
into N servers and M clients. Each of the M clients must
send a request and receive an acknowledgment from each
of the N servers. Each client will then receive a stream of
data from each server. The stream of data is broken into in-
dividual messages to facilitate overlap with disk access and
to accommodate the default PVFS2 data distribution pat-
tern. This complete simulation results in N× M × 2 small
messages for the request and acknowledgment phase, fol-
lowed by the transmission of many large messages for the
actual file data. This benchmark includes no disk activity.

Four key points differentiate this test from the earlier
point to point experiments of section 4.1:

• unexpected messages: PVFS2 requests are received
by servers as unexpected messages because we do
not know in advance which clients will be active, or
how big their request packets will be. We emulate
this capability in MPI by using the MPIIprobe() and
MPI Recv() functions.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35

B
an

dw
id

th
 (M

B
/s

)

Number of hosts

BMI-GM
MPICH-GM

Figure 5. Aggregate read pattern, 10MB per
client/server pair

• discontiguous buffers: PVFS2 by default uses bulk
data messages with a maximum buffer size of 256 KB.
However, these messages must be broken into sepa-
rate 64 KB buffers on the client side to accommodate
the striping of data in 64 KB increments across servers.
The alignment and size of these buffers depends on the
exact offset and size of the I/O operation, so we han-
dle them using list I/O operations in BMI and hvector
datatypes in MPI.

• concurrent operation: Every client and server in
PVFS2 must process a large number of concur-
rent messages from different hosts during the course
of a large read operation. There is no predeter-
mined aggregate structure that would allow for the use
of collective operations. BMI manages pending oper-
ations using a variant of the test function that checks
for completion of any previously posted operation,
BMI testcontext(), while MPI uses MPITestsome().

• memory registration: To emulate the behavior of
PVFS2, all requests and acknowledgment messages
are transmitted to and from memory regions that have
been pinned in advance when possible. The server pro-
cesses also use pinned buffers for bulk I/O. The client
processes do not use preallocated regions, primar-
ily because the target buffers in this case represent
application memory buffers for a file system read op-
eration, which are not controlled by the PVFS2 li-
brary.

For this experiment, we chose a request size of 25 bytes
and a response size of 400 bytes to approximate typical
request and response sizes in PVFS2. We also chose for
each client/server pair to exchange 10 MB of data mes-
sages. This results in a total aggregate data transfer size of

N ×M × 10 MB. Figure 5 shows the results of this experi-
ment. The total number of hosts is varied between 2 and 32,
evenly divided into client and server classifications at each
data point. The aggregate bandwidth is computed as the to-
tal amount of data (not counting requests and acknowledg-
ments) that is transferred divided by the time required for
the slowest of the M concurrent clients to finish its portion
of the transfer.

At the single server, single client data point, the BMI-
GM throughput is more than twice that of MPICH-GM. As
more hosts are added, the difference varies between 35%
and 42%. The BMI-GM performance eventually reaches an
aggregate value of 1728 MB/s for 16 servers and 16 clients.
These improvements are largely due to specific features of
BMI that address the needs of the parallel I/O environment,
including a lightweight mechanism to test for completion
of many pending operations, flexible handling of different
types of memory buffers, efficient support for discontigu-
ous memory regions, and an API that explicitly manages
unexpected messages.

5. Related Work

The fields of message passing and high-performance I/O
have fostered many research efforts into special purpose
network abstractions. Three projects of particular relevance
are summarized below.

The Message Passing Interface (MPI) [9] is a specifica-
tion for application level message passing. Although many
concepts from the MPI API and model were adopted for use
in BMI, there are a number of practical concerns that pre-
cluded the use of MPI as our messaging system. At a high
level, it did not seem appropriate to force all applications in-
teracting with the file system to be MPI applications. Also
current MPI implementations do not deal well with faults in
the network or nodes, often causing the termination of en-
tire groups of processes: it is key that the impact of faults
be minimized in a file system. Finally, the dynamic process
components of many MPI implementations are still under
development, making it difficult if not impossible to con-
nect clients to servers at runtime.

The same arguments preclude the use of the MPICH or
MPICH2 ADI interfaces [8] [10]. The ADI is an abstract de-
vice interface upon which these popular MPI implementa-
tions are built. This interface relies on many MPI constructs
and is not designed for use in environments as dynamic as
that of a parallel file system. At the time of this writing they
also lack features that are needed for efficient mapping to
PVFS2 usage, such as user pointers, unexpected messages,
and thread safety.

uDAPL and kDAPL [6] are user level and kernel level
(respectively) APIs created by the Direct Access Transport
Collaborative industry group to provide a common interface

for RDMA based networks. Examples of such networks in-
clude InfiniBand, VIA, and iWARP [13]. The work of the
DAT Collective is meant to be leveraged in several areas,
the most prominent of which is the Direct Access File Sys-
tem [5] protocol. uDAPL is also being used as a starting
point for the Interconnect Transport API [7] to be speci-
fied as a standard by the Open Group. uDAPL and kDAPL
share many features with BMI, such as efficiency, discon-
tiguous buffer support, and thread safety. They were also
clearly designed with file system access in mind. However,
these APIs are not appropriate for PVFS2 because they
require RDMA support and would not map well to com-
monly deployed legacy protocols such as TCP/IP. uDAPL
and kDAPL also present a relatively low level interface and
lack features such as unexpected message support. uDAPL
was not publicly available when BMI development began.

Portals [2] is a message passing architecture developed
by Sandia National Laboratory and the University of New
Mexico. It was originally targeted for the Puma lightweight
kernel, but has since been ported to Linux. Portals empha-
sizes scalability and ability to operate on a variety of par-
allel computer networks. It features the ability to directly
access remote memory without operating system interven-
tion, and is designed to be able to make progress on com-
munication without application processing. However, Por-
tals exposes a low level interface which requires manage-
ment of event queues and remote memory addresses. Por-
tals also lacks flow control which must be provided by the
user. Like uDAPL, Portals also was not publicly available
when BMI development began.

6. Conclusions and Future Work

We have found that it is critical to select a network ab-
straction layer that is appropriate for the system software
that will use it. In particular, we identified the key require-
ments of the parallel I/O problem domain, and implemented
the Buffered Message Interface to meet those requirements.
It performs well for the type of network workloads com-
mon to high volume parallel file systems while introduc-
ing little overhead to the communication path. BMI already
serves as the networking foundation for the PVFS2 file sys-
tem and has demonstrated how file system operations can
be efficiently mapped to a high performance API.

BMI also serves as a tool to explore further networking
research in the context of parallel I/O without imposing fun-
damental changes upon the file system itself. In particular,
we intend to implement more network modules, examples
of which might include a shared memory module or a reli-
able UDP module. There is also room for optimization of
existing modules through techniques such as memory reg-
istration caching.

Acknowledgments:We gratefully acknowledge use of
“Jazz,” a 350-node computing cluster operated by the Math-
ematics and Computer Science Division at Argonne Na-
tional Laboratory as part of its Laboratory Computing Re-
source Center.

References

[1] InfiniBand Trade Association. InfiniBand architecture spec-
ification, release 1.0, October 2000.

[2] Ron Brightwell, Rolf Riesen, Bill Lawry, and A. B. Mac-
cabe. Portals 3.0: Protocol building blocks for low overhead
communication. InProceedings of the 2002 Workshop on
Communication Architecture for Clusters, April 2002.

[3] Philip H. Carns. Design and analysis of a network transfer
layer for parallel file systems. Master’s thesis, Clemson Uni-
versity, Clemson, SC, December 2001.

[4] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Ra-
jeev Thakur. PVFS: A parallel file system for Linux clus-
ters. In Proceedings of the 4th Annual Linux Showcase
and Conference, pages 317–327, Atlanta, GA, October 2000.
USENIX Association.

[5] DAFS Collaborative. Direct access file system protocol,
v1.0, August 2001.

[6] DAT Collaborative. uDAPL and kDAPL API specification,
v1.0, 2002.

[7] Interconnect Software Consortium.
Interconnect Transport API specification.
http://www.opengroup.org/icsc/ .

[8] William Gropp, Ewing Lusk, Nathan Doss, and Anthony
Skjellum. A high-performance, portable implementation of
the MPI message-passing interface standard.Parallel Com-
puting, 22(6):789–828, September 1996.

[9] Message Passing Interface Forum. MPI-2: A Message Pass-
ing Interface Standard.High Performance Computing Appli-
cations, 12(1–2):1–299, 1998.

[10] MPICH2.http://www.mcs.anl.gov/mpi/mpich2/ .
[11] Myricom, Inc. The GM message passing system.

http://www.myri.com .
[12] Parallel Virtual File System 2.

http://www.pvfs.org/pvfs2 .
[13] James Pinkerton, Ellen Deleganes, and Michael Krause. In-

ternet draft: Sockets Direct Protocol (SDP) for iWARP
over TCP. http://www.ietf.org/internet-
drafts/draft-pinkerton-iwarp-sdp-01.txt ,
September 2004.

[14] VI Architecture specification revision 1.0.
http://www.viarch.org ,
December 1997.

