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Abstract

Network speeds are increasing well beyond the capabil-
ities of today’s CPUs to efficiently handle the traffic. This
bottleneck at the CPU causes the processor to spend more
of its time handling communication and less time on actual
processing. As network speeds reach 10 Gb/s and more,
the CPU simply can not keep up with the data. Various
methods have been proposed to solve this problem. High
performance interconnects, such as Infiniband, have been
developed that rely on RDMA and protocol offload in or-
der to achieve higher throughput and lower latency. In
this paper we evaluate the feasibility of a similar approach
which, unlike existing high performance interconnects, re-
quires no special infrastructure. RDMA over Ethernet, oth-
erwise known as iWARP, facilitates the zero copy exchange
of data over ordinary local area networks. Since it is based
on TCP, iWARP enables RDMA in the wide area network as
well. This paper provides a look into the performance of one
of the earliest commodity implementations of this emerging
technology, the Ammasso 1100 RNIC.
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1 Introduction
As network speeds increase the CPU must spend more

time working to service network requests. This takes time
away from the real work that needs to be done and becomes
a bottleneck to performance. The problem becomes espe-
cially evident when network speeds are increased to 10 Gb/s
and beyond. The real problem is the TCP/IP stack, which
must be processed by the host CPU. To avoid this prob-
lem, technology such as Infiniband has been developed that
not only allows for a very fast interconnect, but also em-
ploys a mechanism known as Remote Direct Memory Ac-
cess (RDMA) [26] to bypass the operating system and CPU
in order to directly move data into application memory.
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This may be a fine approach, and in fact is quite com-
mon. The problem with technology such as Myrinet [21],
Infiniband [12], or Quadrics [25], is that they all employ a
special purpose interconnect. It is an undeniable fact that
Ethernet is the dominant existing network infrastructure. In
order to take advantage of this, RDMA over TCP/IP has
been developed [26]. While the special purpose intercon-
nects are limited in scope to specific high performance com-
puting (HPC) deployments, RDMA over TCP/IP, which is
known as iWARP [10], has the potential to be easily inte-
grated into our everyday networks. One major reason that
iWARP is interesting to the HPC community is cost. Due to
the high cost of special purpose interconnects, it is still com-
mon to have a cluster connected with Ethernet. Though 10
Gb/s Ethernet is extremely expensive and not widely used at
present, 1 Gb/s Ethernet is moderately priced, and is com-
monly used. Despite the current high cost of 10 Gb/s Ether-
net, it is likely that the price will drastically decrease in the
near future [33].

If we consider the way Ethernet has been adopted in the
past, it is pretty clear that the price will drop considerably
with time. It should be clear that TCP/IP based RDMA im-
plementations can greatly improve performance of the sys-
tem without greatly increasing the cost.

Some would argue that Infiniband is on its way to be-
coming a commodity interconnect. This may very well be
true. Despite being a commodity product, Infiniband will
remain at a disadvantage due to its local area network limi-
tation. iWARP [26], on the other hand, running over TCP/IP
is not limited to the local area network environment, but is
capable of functioning in a wide area environment as well.

The sections that follow provide insight into the perfor-
mance implications of iWARP as well as the motivation for
iWARP. In Section 2 we shall explore the basic reasons why
to use RDMA in the first place, followed by a performance
analysis of an actual RDMA implementation. We will look
at the feasibility of using iWARP as the basis for message
passing, as well as the impact of the verbs level API. In Sec-
tion 4 we examine some of the limitations to iWARP, then



follow with some insight into related work, and our intended
future use of iWARP in section 5.

2 Why RDMA?
The obvious question is, why use RDMA? In traditional

TCP/IP-based networks, the operating system must handle
processing of the network stack. This makes other pro-
cesses wanting to use the processor have to wait. It may
seem intuitive that to add extra processing of RDMA on top
of this would only slow things down. This, however, is not
the case. For RDMA over Ethernet to work correctly the
processing is done on-board an RDMA enabled Network
Interface Card (RNIC). This alleviates the CPU from hav-
ing to process the network stack. In [11] we clearly see the
need to eliminate the role of the CPU in network processing.

Offloading of the network stack can be accomplished by
itself, such as what happens with TCP offload engines, or
TOE cards. An RNIC is more than a TOE. The RNIC sup-
ports an API that provides for the direct placement of in-
coming data to the memory of the application. It is this pro-
cess that makes the RNIC capable of a true zero-copy data
transfer. Operating system bypass is another technique that
is offered by an RNIC but not a TOE. This avoids some in-
direction and context switches that affect particularly small
data transfers. U-net [32] and EMP [29] are two examples
that recognize the need both to bypass the kernel and to min-
imize memory copies. Other attempts [13] at zero-copy are
not general enough to function in a real-world environment
where packets are dropped and arrive out of order.

RDMA also has the advantage of a verbs level API for di-
rect access to the hardware. This means applications can be
written to completely bypass the kernel and achieve much
higher network performance. The advantage to a verbs API
layer is more important than just for performance of appli-
cations. This also means that it is possible to have a com-
mon API which can allow programmers to write software
for one RDMA device and have it run on another RDMA
device. The Direct Access Transport (DAT) Collaborative
aims to do just this, with DAPL [8]. For instance, in the
case of iWARP, each RNIC may have its own API, but all
iWARP RNICs follow the same verbs [26]. Compatibil-
ity will not be limited only to iWARP RNIC’s from differ-
ent vendors, rather code written in DAPL will function on
iWARP RNICs, Infiniband Host Channel Adapters (HCA),
and other special purpose interconnects as well.

It has been argued that there is a need to enable ordinary
sockets applications to take advantage of modern high per-
formance user level APIs [2], and as it turns out, DAPL [8]
is not the only effort to abstract the verbs layer of RDMA
devices. Sockets Direct Protocol (SDP) [24, 23] is a way
to allow applications written to use TCP/IP sockets to take
advantage of the RDMA type of transport. This means
existing applications can take advantage of RDMA with-

Figure 1. iWarp and TCP Protocol Stacks.

out being rewritten; a recompile or relinking with the cor-
rect libraries is all that is needed, the socket semantics are
the same. Other approaches include extending the exist-
ing socket interface [9], and another approach to abstract
the interface API of an RDMA device [4]. It is not clear
what trade-offs in performance will arise through use of
these APIs. In at least two instances as shown in [7] the
TCP performance over sufficiently fast interconnects such
as Infiniband[12] was much lower than native communica-
tion. In fact with a maximum bandwidth of 10 Gb/s avail-
able, only around 2 Gb/s was achieved.

Other advantages of RDMA, specifically those related
to performance, will be highlighted throughout the remain-
der of this paper. The diagram in Fig 1 shows the protocol
stack of iWARP compared with traditional TCP, and it is
important to understand, in order to look at experimental
performance in the next section. At the top of the stack
we find the verbs level iWARP API [10]. The iWARP API
interfaces with the RDMAP [27], DDP [28], and MPA [6]
layers to create TCP packets which can be sent into the net-
work and handled like any other packet. In an ideal situation
everything below the iWARP API layer would be offloaded
to hardware. At the very least the Transport layer and below
must be offloaded to hardware, in the case of TCP only the
Data Link and Physical layers are handled by hardware.

3 Experiments
The results that follow were gathered using two RNIC

Ethernet server adapters from Ammasso Inc. [1]. Two IBM
Xseries servers were outfitted with the Ammasso cards,
each running RedHat Enterprise Linux and the 2.4.21-15
kernel. Both servers contain a single P4 Xeon chip run-
ning at 2.8GHz, and 1.5GB RAM. The same base version
of MPICH [19] is used for both TCP and iWARP, that is
MPICH 1.2.5, the only difference is TCP’s MPICH is im-
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plemented as sockets and iWARP’s MPICH is implemented
with Ammasso’s API calls. Since standard gigabit Ethernet
switches can be expected to add around 5 microseconds of
latency, the two RNICs were connected back to back, via a
CAT5e Ethernet crossover cable. This also eliminates any
skew in the results due to other network traffic.

All data, including ordinary TCP socket based transfers,
was gathered using the Ammasso cards rather than the on-
board Ethernet of the servers. This is made possible through
the dual data paths of the Ammasso 1100. Traffic intended
to be used in an RDMA operation between two RNICs is
processed on the card by the RDMA data path, while traffic
meant to be processed as regular TCP, such as that from
an NFS server, is handled by another data path. This path
forwards the incoming data along to the usual TCP/IP stack,
as any other network card would.

The RNIC has two IP addresses and two MAC addresses.
This allows the RNIC to determine what traffic is meant for
the TCP data path and what traffic is meant for the RDMA
data path. This dual use of an RNIC is an important advan-
tage. With special purpose networks, there is usually a need
to use a regular Ethernet device as well. Often special pur-
pose networks are capable of handling TCP traffic, but this
does not solve all the problems. For instance, the special
purpose interface can not be established until the operating
system is running; in a cluster which utilizes network boot-
ing there needs to be a way of using standard TCP to boot
the operating system.

In the following sections we shall refer to RDMA over
Ethernet as simply iWARP and common TCP socket based
communication as TCP.

3.1 Message Passing Capability

We have chosen to examine the latency and bandwidth
for MPI [20] operations largely in part because MPI is the
dominant form of communication in the HPC realm. La-
tency and bandwidth are extremely important because they
are the most basic metrics and give us the best overall view
of the performance related to the interconnect. It is for this
reason that we should consider iWARP’s capability to facil-
itate message passing.

The goal is not to evaluate a particular implementation of
MPI, rather we want to look at some basic performance met-
rics that are indicative of how well suited the technology is
to message passing. We do this by looking at iWARP com-
pared with TCP. We do not consider Infiniband due to the
fact that Infiniband is a 10 gigabit per second interconnect
and our Ethernet hardware is only 1 gigabit. For a detailed
analysis of MPI over Infiniband’s performance, see [16].

The latency and bandwidth tests in Figures 2, 3, 4, and 5
were conducted with NetPIPE 3.x [31], a protocol indepen-
dent network performance analyzer. We use a version of
NetPIPE compiled for MPI over TCP and a version com-

Figure 2. Latency for small message sizes

Figure 3. Bandwidth for small message sizes

piled for MPI over iWARP. The latency and bandwidth re-
sults are shown below. Basically, NetPIPE conducts a series
of ping-pongs between two MPI processes.

In Figure 2 we are looking at only tests smaller than 100
bytes. It is important to look at what happens for small
messages for a number of reasons. First and foremost the
details of what happens with small messages are washed
out in graphs which cover as large of a range as do Figs.
4 and 5. We also should have an understanding on how
small messages behave since small messages are often used
for control in applications. Latency is key for these small
control messages.

We see that in Figure 2 the latency for iWARP is about
half that of the latency for TCP. It is also the case that
iWARP has less latency for 100 bytes than TCP does for 0
byte messages. In fact, for a given message size iWARP is
almost twice as fast as TCP. It is worth observing that both
lines in Figure 2 have relatively the same rate of change,
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Figure 4. Latency, the big picture

about 2 microseconds from 1 to 100 bytes. This is most
likely explained by the fact that iWARP is really built on
top of TCP, thus the relative changes occur at the same size
messages.

Figure 3 shows us the bandwidth of both iWARP and
TCP for small message sizes. We see in Figure 3 that
iWARP’s bandwidth increases much more rapidly than that
of TCP, yet in Figure 5 the overall trend of TCP is the same
as with iWARP. Yet, iWARP does not continually increase
in bandwidth relative to TCP. This reveals a key point about
iWARP and TCP. iWARP will start off with higher band-
width, due to the low latency, but iWARP is still limited by
the absolute bandwidth of the underlying transport, which
as mentioned before is TCP.

Thus, as Figure 5 indicates, iWARP and TCP experience
the same relative changes, but iWARP reaches the physical
limit of the network, while TCP can not. The major advan-
tage to iWARP as indicated by Figure 3 is that the differ-
ence in latency is widening due to the decreased bandwidth
of TCP for large messages.

Another important characteristic of networks is their
ability to process simultaneous bidirectional traffic, this is
important for message passing and asynchronous commu-
nication. In Figure 6 we see iWARP as having a large in-
crease in bi-directional bandwidth over one way bandwidth.
While, on the other hand, TCP bi-directional bandwidth is
not a significant advantage, in fact with TCP the bidirec-
tional bandwidth is actually slightly less than the one-way
bandwidth. The program used to generate the data in Fig-
ure 6 was from the OSU MPI benchmarks [17, 14]. It is
for this reason that the bandwidth shown in Figure 6 can
not be compared to the bandwidths in the previous figures,
the two tests are different. Due to the RNIC’s capability
to offload processing of the TCP/IP stack and move data
directly between user memory and the RNIC, send and re-

Figure 5. Bandwidth, the big picture

Figure 6. One-way and bi-directional band-
width

ceive operations can occur at the same time. This is what
gives the increase in bi-directional bandwidth over one-way
bandwidth.

3.2 MPI Details

Since MPI [20] is one of the main uses that iWARP will
be targeted for, we should look at what overhead is asso-
ciated with the MPI layer. It is obvious that there has to
be some overhead. By looking at Figure 7, we see that
the overhead associated with MPI in iWARP is actually
less than the overhead associated with MPI by TCP. The
data in Figure 7 was obtained through NetPIPE [31], for all
TCP, and for iWARP MPI, while the data for native, or raw
iWARP was gathered using custom software written specif-
ically to mimic the behavior of NetPIPE, keeping the se-
mantics the same, but implemented with an iWARP API.
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Figure 7. MPI bandwidth overhead

In order to calculate the amount of overhead formula 1 was
used.

BWOverhead =
raw−mpi

raw
×100 (1)

We can see from Figure 7 that the overhead associated
with bandwidth is around 10% for iWARP, compared to
20% for TCP. This difference is likely due to differences in
the programming interfaces for iWarp and TCP. The iWarp
API provides higher-level functions that allow for signif-
icant offload and overlap unlike the sockets interface used
with TCP. We do not show a graph for latency but the results
are the same as we would expect.

3.3 Impact of the CPU

One of the biggest advantages of RDMA is that the CPU
does not have to be involved in as much of the communi-
cation of data, at least in a true zero copy implementation
this is the case. Using COMB [15] to overlap MPI commu-
nication and computation, we can look at what happens as
the CPU is needed for computational tasks. COMB uses a
busy loop to perform a known amount of work while send-
ing and receiving data with a remote host. This amount of
work increases and measures of bandwidth are taken at vari-
ous intervals. This MPI-based benchmark provides the data
used in Figure 8.

From Figure 8 we see how unaffected iWARP is as the
amount of CPU time used for computation is increased.
iWARP achieves a higher bandwidth than TCP as far out
as 80%. This means that with only 20% of the processor
dedicated to network communication, iWARP has a band-
width as good as TCP using 100% of the processor for net-
work communication. According to Figure 8 TCP band-
width begins to drop noticeably right away, while iWARP
holds steady as more of the CPU is dedicated to computa-
tion. The reason for the steep decline in iWARP bandwidth
is that the CPU must do some work to progress the applica-
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tion. The CPU is responsible for such activities as posting
Send Work Requests and checking for Completion Queue
Events, although the CPU is not involved in data path opera-
tions as it is with TCP. Toward the right side of Figure 8, the
short intervals that are allocated to message passing work
are too far apart, effectively starving the NIC by leaving its
queues empty.

3.4 iWARP API Impact

We have so far shown the performance benefits of
RDMA, now we turn to the costs associated with the API
of our particular RNIC implementation.

API Call Time (µs)
RNIC Open 156.15
RNIC Close 81.91
Register Async Event Handler 1.96
Register CQE Handler 694.31
Allocate Protection Domain 1.13
Create Queue Pair 78.21
Post Work Request - RQ 4.63
Post Work Request - SQ 4.87
Connect Queue Pair 305536.34
Poll CQ - Empty 0.12
Poll CQ - Non-Empty 1.96

Table 1. Individual API function timings

The data in Table 1 was gathered through the use of cus-
tom software designed to test each entry in the table. These
API calls represent some of the most common that will be
used in most iWARP applications. Due to space require-
ments we shall not go into details on the API calls here, we
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Figure 9. Memory registration costs

suggest referring to [10] for more information on what each
call does.

It is, however, worth noting that posting work requests is
quite efficient. Less than five microseconds to post a send
or a receive work request. These are the values of send and
receive overhead in a LogP [5] model of iWARP. It is also
the case that the overhead incurred in the send or receive
operation has a large impact on the performance of the ap-
plication [18].

Another very important aspect that we should look at is
the cost of registering or reserving memory for the buffers
of data we want to transfer. These are costs not directly
incurred in the TCP case. Figure 9 shows us the costs as-
sociated with registering memory regions. There are two
types of memory regions in iWARP [26], tagged and un-
tagged. The costs associated with these two types are rela-
tively the same which is why Figure 9 does not make a dis-
tinction between the two. It appears that the cost of register-
ing memory scales very well. To register 1 kB of memory
takes only around 60 microseconds. The somewhat periodic
jumps in registration time, especially pronounced at around
100K and 225K, are due to communication protocol issues
between the host driver and the RNIC which are necessary
to convey details of the physical buffer list.

4 iWarp Limitations
iWARP may be a better solution than traditional TCP/IP

communication for many applications, but it is not without
limitations. Currently 10 Gb/s Ethernet is very expensive
and not commonplace, thus implementations today are lim-
ited to a wire speed of only 1 Gb/s. On the other hand,
special purpose networks are commonly in the 10 Gb/s
range. iWARP is also very new, Ammasso [1] was the first
to produce such a product, while specialty interconnects
such as Infiniband [12], Myrinet [21], and Quadrics [25]

are already established and commonplace, particularly in
the HPC arena. As mentioned earlier this is likely to change
in the near future, but until then iWARP can not compete on
a level playing field with the likes of Infiniband, Myrinet,
and Quadrics.

iWARP suffers, as do the specialty interconnects men-
tioned previously, from the problem of the application sup-
plying enough data to take advantage of the full bandwidth.
A 10 Gb/s link does not help if the average application can
only generate 1 Gb/s worth of traffic. Another limitation
of iWARP is, of course, how fast the RNIC can process in-
coming traffic. The same is true of any RDMA implemen-
tation. Another advantage specialty purpose interconnects
have over iWARP is the capability to implement hardware
specific functionality, such as the reliable hardware multi-
cast mechanism in Quadrics. This kind of feature is not
possible with iWARP because iWARP is built on an ex-
isting infrastructure of Ethernet switches that do not sup-
port such features (although one might imagine using the
non-reliable multicast in some fashion). On the other hand,
iWARP can run over any TCP/IP based network, which is
really the biggest benefit of all.

5 Related and Future Work
There has been much work done in the field of zero-

copy techniques and protocol offload [29, 32, 30, 3]. Unlike
these, our work is an in-depth study of a commodity iWarp
implementation.

In the future we are planning to look into the feasibil-
ity of RDMA in the wide area network, utilizing the Third
Frontier Network [22] already in place in Ohio. We also
plan to evaluate soon to appear 10 Gb/s iWarp implemen-
tations and to evaluate the scaling effects of multiple-speed
iWarp adapters in a single network.

6 Conclusion
In this paper we have shown the performance of iWARP

looking at both the message passing capabilities as well as
the underlying API performance. It is evident that iWARP
is a viable and attractive vessel for message passing, and as
such is a good fit for cost sensitive high performance com-
puting where specialty interconnects are not always an op-
tion.
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