
Fast Scalable File Distribution Over Infiniband*

Dennis Dalessandro
Ohio Supercomputer Center

Suite 310
 1 S. Limestone St

Springfield, OH 45502
dennis@osc.edu

Pete Wyckoff
Ohio Supercomputer Center

1124 Kinnear Road
Columbus, OH 43212

pw@osc.edu

Abstract
One of the first steps in starting a program on a cluster is to get the

executable, which generally resides on some network file server. This creates
not only contention on the network, but causes unnecessary strain on the
network file system as well, which is busy serving other requests at the same
time. This approach is certainly not scalable as clusters grow larger. We
present a new approach that uses a high speed interconnect, novel network
features, and a scalable design. We provide a fast, efficient, and scalable
solution to the distribution of executable files on production parallel machines.

Keywords
RDMA, Scalable File Distribution, Infiniband, File system, Cluster

1. Introduction
Often times in the cluster environment of today a program is executed on

a cluster by a number of nodes receiving the executable code from a single
source. Sun's Network File System (NFS) [14] is a prime candidate for such a
task as it is popular, stable, and widely available. As executables grow larger,
and the number of nodes increases, the single NFS server struggles to handle
the additional load, as it was not designed to handle these types of situations.
Not only must NFS send more data to more nodes, it also has to be available to
service file requests from other users on the cluster.

Two immediate observations show why using NFS is the wrong approach
for executable distribution. First, the parallel processes are cooperating and all
need exactly the same set of files at exactly the same time. Having each node
request the file from NFS independently causes unnecessary load on the server
and much duplicated effort among the clients. Second, high performance
clusters generally have some sort of fast interconnect for message passing
traffic, such as Myrinet [21], Quadrics [16], or Infiniband [1]. However,
installations generally use a fast or gigabit Ethernet network for file system
traffic, perhaps because using NFS generally requires using an IP stack that may
not be supported on the high performance network or on the file system server.

Our approach to these problems starts by recognizing the collective
nature of parallel executable startup. Collective operations appear in many
contexts. In message passing, the MPI library [5] offers primitives for functions
such as broadcast and reduce that optimize the data transfers when compared
to the equivalent collection of point - to- point primitives. In peer - to- peer file

*Support for this project was provided to the Ohio Supercomputer Center
through the Department of Energy ASC program .

1

sharing, collectives are used to save link bandwidth at the source host and fully
utilize all network paths among downloading hosts. The parallel startup
problem is similar to both of these, but the nature of the interconnection
network and the types and sizes of files lead us to a particular solution.

Modern networks offer features that can be used to enhance message
passing performance. We investigate the advantages and drawbacks of using
Remote Direct Memory Access (RDMA) [2] to perform the file distribution. It
allows us to move data between nodes without the involvement of the operating
system or host processor, exposing opportunities for overlap during the startup
phase.

In Section 2, we have a brief introduction to Infiniband [1] and RDMA [2],
followed by a discussion in section 3 of the environment that Fast Startup is
intended to take part. In section 4 we focus on the basic layout and the
decisions which influenced the engineering of the Fast Startup software. Next
in section 5 we turn to experimental results to show that Fast Startup is indeed
a better choice. Section 6 looks at related work and we conclude in section 7.

2 Infiniband and RDMA
Infiniband is a technology to interconnect processor and I/O nodes to

form a system area network [1]. It is a switched, point - to- point network with
high speed data transfer and low latency. RDMA [2] is a technology that allows
the transfer of data directly from a process running on a node into the memory
of a process running on a remote node. The OS and CPU are not involved in this
transfer. This is what makes RDMA so appealing. Infiniband provides both
RDMA read and write data transfers.

As one of our target clusters uses 10 gigabit Infiniband, we choose that
as the initial implementa tion platform. Other alternatives include Quadrics [16]
and RDMA over Ethernet (iWarp) [2], but those technologies are not yet as
inexpensive or prevalent. However, as other interconnects mature, we want to
take advantage of them. Thus, we were careful in designing the code to allow
for this, as described in Section 4.

3. Resource Management Environment
The collective file distribution problem is constrained and orchest rated

by the resource management environment. Production machines use software
such as PBS [4], Platform LSF [17], or Slurm [18] to control the assignment of
individual hardware elements in a parallel machine to particular tasks. Users
submit job scripts that specify requirement s, such as number of processors and
amount of memory, and a list of shell commands to run to perform the tasks.
MPI jobs, in particular, use a job launcher such as mpirun [7] or mpiexec [6] to
spawn the executable on each processor and initialize communications among
the nodes. There are three phases to starting a parallel executable: signaling a
daemon on each node to begin a task, launching the executables themselves,
and initializing communications in the context of the new parallel job. The final
phase, initializing communications among nodes, has been the subject of much
previous work and is discussed briefly in Section 6.

For the first phase, the MPI job launcher program contacts each node in
turn to instruct it to fork and execute one task of the parallel process. Using

2

MPICH's [19] mpirun [7], this involves using rsh or ssh in a loop to contact the
inetd on each node to start the tasks. With LAM [15], MPD [10], and mpiexec [6],
an existing collection of daemons are used to start up the processes efficiently.
In the case of mpiexec, these daemons are the individual resource managers
themselves. Regardless, this signaling process is relatively lightweight in terms
of resource consumption on the network and scales well.

The second phase generally has each process independen tly invoke the
exec() system call directly on a shared file system, such as NFS [14], to start the
executable. As discussed earlier, this activity is a major limitation to
scalability. Besides the executable itself, shared libraries associated with the
code also must be read into the memory of each node at this time. The job may
further specify common input files to be used by all the processes. Distributing
all these files collectively on the message passing network is the subject of the
next section.

4. Design

The basic design of Fast Startup consists of three components. First,
there is a transpor t specific module that currently handles all the transferring
of data from a high level view, such as sending and receiving a file. There is
another module which handles helper functions for the transpor t module, such
as initializing the Infiniband network. Lastly, we have the main module that
oversees all operation of the application. It handles making connections,
coordinating sending and receiving, and everything else related to the parallel
distribution of the file.

4.1 API
The API we have chosen to use is VAPI [8] which is the lowest level API

that enables us to interface directly with the Infiniband hardware. This is a
verbs API, and is the least common denominator on Infiniband systems. We
have chosen not to use something like DAPL [3] because it is not very common
yet. Other API's such as IPoIB [20] do not expose the necessary function calls to
do RDMA directly.

4.2 Topology
One of the most importan t design considerations is to use a tree- based

approach for the distribution of the files. This way we have a Ο(log N)
algorithm. Taking a step back we can see this is already a better approach and
the efficiency of the distribution will out perform the traditional NFS [14] file
distribution, which happens to scale linearly as we show in section 5.

Things can only get better by increasing the performance of the network.
One of the aspects we wanted to look at is the effect of arity, or the maximum
number of nodes one node in the tree may send to. It was important to make
this an option that can be set at runtime. For extremely large numbers of
nodes, it may be better to allow nodes to send to more than just two others, so
instead of a binary tree requirement we have an n- ary tree flexibility. The
biggest advantage of the tree based distribution is that it is easily scalable,
which is an absolute requiremen t for this research.

3

4.3 Communication Manager
In the future, porting this software to DAPL [3] to make use of a

communication manager (CM) could be quite useful. This would allow for a
reduction in the connection build up time between nodes that we have to
endure at the present time. More on this follows. As of right now there is no
accepted standard for a communication manager on Infiniband so we should
not rely on any one in particular.

Since we are not using DAPL [3] we use TCP as a means of building up the
initial connection between two nodes. This amounts to sending Infiniband
connection related information which can be handled more efficiently when
using a communication manager. We show the portion of time it takes to
complete this later.

4.4 File Transfer
One of the major advantages offered by this work is the utilization of

advanced networking features, namely Remote Direct Memory Access (RDMA).
There are, however, limitations on the use of this mechanism, and thus we have
identified three different schemes to send a file. Those are mmap all, multi send
multi map, and multi send one map. All three use RDMA to move data around.
The differences are in how the memory is allocated and if the file can be sent at
one time or not.

Presently, Infiniband allows a maximum transfer of 2GB at one time [9].
Clearly we need a way to send larger files since this is meant to be scalable in
every aspect. It may also be desired that a limit be set on the maximum size
that can be sent at one time to take advantage of pipelining. One other
importan t configuration choice is the chunk size. Chunk size refers to the
amount of data that can be sent at one time. All of these factors significantly
impact performance as we will see later.

Mmap all, as the name implies, involves memory mapping the entire file.
On the Root Node the file is opened through the regular OS method and mmap()
is used to map the file to the send buffer. There are no memcpy() calls made.
On the receiving node an empty file is created and mapped to its receive buffer.
The RDMA that occurs moves the file directly from the local disk of the root
node to the local disk of the remote node. Now the node that just received the
file can open the new local file and map it in.

Multi- send multi - map , unlike the above, maps only portions of the file
and copies the data to a buffer to send. This type of send involves multiple
memory maps to be made. This is essential to support large files. It may be the
case that the file being transferred is too large to fit into a contiguous area of
memory, thus requiring multiple memory maps.

 Similarly, multi - send one- map sends the file in chunks. The difference is
that multi - send one- map will map the entire file on both ends like with mmap
all . This achieves the greates t performance, but the available memory may not
always be available to hold the entire file at one time.

In both of the multi send methods the sender will poll its completion
queue [9] to verify the send request was properly formatted and wait for an
acknowledgment from the remote node that it has received and processed the
data. The remote node knows when data has been received by polling its

4

completion queue. It is an RDMA write with immediate data [9] that makes this
possible. We show the performance implications of the three send types in the
next section. We support all three send types in the software to ensure that
Fast Startup can handle any size file.

 5. Results
The results that follow were gathered on OSC's P4 Cluster which includes

112 compute nodes connected with 10 gigabit Infiniband and 1 gigabit Ethernet.
Each with two 2.4 GHz Intel P4 Xeon processors and 4GB of RAM. The file sizes
used may seem quite large compared with the common executable. This,
however, is intentional. It is meant to show the scalability of Fast Startup, and
is motivated by the need to send shared libraries and input files. It should be
noted that all data was gathered on a 2- ary (binary) tree, with the exception of
the last data set which looks at multiple arities.

5.1 Total Time to Distribute
One of the most important measures we need to look at is the overall

time to distribute the file to a number of nodes. Having measured the mean
time it takes to send a 100MB file, 361 milliseconds, and the mean time it takes
to receive a 100MB file, 193 milliseconds (see table 1), we can know how long it
will take to distribute amongst a varying number of nodes. Using the send
history of runs of various size nodes, from 2 to 100 in increments of 3, we can
plug in the mean send and receive times to calculate the total expected
distribution time. We do this in software to account for the parallelism of a tree
based distribution. We now have the most general case possible of sending to a
certain number of nodes. The results are shown in Fig 1.

The reason we do not measure this directly is because it is difficult to get
a very accurate result without the notion of a global clock, which is not possible
to achieve [22]. The root node is the only node that knows when the distribution
started, and the only way for it to know when the distribution is completed is to
have every node report when finished. This adds significant overhead and
skews the result. The same situation arises in section 5.5.

Fig 1. Time to distribute 100MB.

5

0 10 20 30 40 50 60 70 80 90 100

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Time To Distribute

Nodes

T
im

e
 (

s)

We see some flat areas on the graph, and that illustrates perfectly the advantage
gained from a tree based algorithm. The flat areas are due to different numbers
of nodes receiving the file in the same amount of sends. Ultimately the cause of
this is the ability to have many sends and receives happening in parallel with
each other.

It is also good measure to compare this with how long it takes NFS to
distribute to a certain number of nodes. Data in Fig 2 was generated on OSC's
large mass storage system. This is comprised of multiple dual P4 2.4GHz with
SCSI RAID disks and a 1Gbps Ethernet interface. These NFS servers fan out via
high performance switches to connect to the compute nodes on the cluster.
Due to the fact that NFS is so slow and inefficient we have only tested NFS up to
30 nodes. See Fig 2.

Fig 2. Time to distribute 100MB, NFS compared to Fast Startup.

We can see from Fig. 2 that it takes roughly 1.5- 2 seconds per node. While with
Fast Startup and Infiniband it takes roughly 3 seconds to distribute to 100
nodes. Potential reasons for the poor performance of NFS include, lack of
server software stack scalability and heavy load on the network. We see 30
nodes take roughly 70 seconds to receive 100MB each. This is an aggregate
bandwidth of 43MB/s, well under the potential 125MB/s available in the gigabit
Ethernet network. Therefore, we suspect the biggest drain on performance
comes from the overheads associated with the NFS protocol and costly
send / r eceive network semantics rather than problems with load on the network.

5.2 Basic Send Performance
We next look at how long Fast Startup takes to send a certain amount of

data. Using files ranging from 4KB all the way up to 1GB we show the rate at
which Fast Startup can send the file to the remote node, including all overhead
incurred by our software. Then the remote node saves the file locally and
acknowledges the sender. The data in Fig. 3 represents the mean time to send
the various file sizes. The mean was taken over a large number of trials. The
standard deviations of these means were always less than 1%. We see that the
mean is pret ty accurate, and that the trend of the graph is very linear as we

6

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

NFS

Fast Startup

nodes

T
im

e
 (

S
)

would expect. The slope is linear across the entire range.

Fig 3. Time to send various size files.

A small 4KB executable took almost no time (0.3 milliseconds), while even the
1GB file takes less than 2 seconds. The mean time to send a 100MB file is 169
milliseconds, which we will look at as a general case through out.

5.3 Chunk Size
Another interesting performance aspect that we wanted to look at is the

effect of chunk size. We can see what impact chunk size and the type of send
has on the overall performance by looking at Fig. 4. The graph in Fig. 4 depicts
the mean time to send a 100MB file. As with the above, this time includes the
time to send the file to the remote node, then for the remote node to save the
file locally and acknowledge the sender.

Fig 4. Time to send in chunks.

From the above graph we see that a mmap_all is far superior to the other two.
This is due to the overhead involved in each RDMA operation. The reason that

7

0 10 20 30 40 50

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

mmap all

multi-send multi-map

multi-send one map

Chunksize (MB)

T
im

e
 t

o
 S

e
n
d
 1

0
0
M

B
 (

s)

0 100 200 300 400 500 600 700 800 900 1000

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Time to send

Filesize (MB)

T
im

e
 (

se
co

n
d

s)

the mmap_all line is flat is that chunk size has no effect since the file is sent all
at once with this type of send. The reason for even having the other two types
of sends are for files larger than can be sent in one send through the
interconnect.

The multi - send multi - map type performs slightly worse than multi - send
one- map. As we can see the two lines start to get closer and closer together.
This is as expected because as we increase the size that we are mapping it is
getting closer to one large mapping. Clearly we want to map as much as
possible at one time, and minimize the number of mappings that we need to do
in order to gain the best performance.

The lesson to be learned here is that if a file can not be sent in one send
due to restrictions, either on the interconnect or the restrictions on mapping
memory, it is best to make the chunk size as large as possible and use the
multi - send one- map type of send. Unfortunately mapping memory turns out to
be the biggest problem due to the fact that it needs to map contiguous area of
memory, so for large files, lots of memory is needed.

5.4 Time Breakdown
For the mmap_all case we break down the entire process of sending and

receiving a file to see just where the time is spent and how much time is spent
in each stage. Over many nodes the average to send a 100MB file is 361.3
milliseconds. This time is different than that shown in Fig. 3 as it is the total
send time which includes all overheads. The components that make up this
time are illustrated below in Table 1.

Send Event Time Spent (ms)

Build Connection 178.0

Wait QP Ready 3.0

Send Initial RDMA 3.4

RDMA Executable 171.9

Send Overhead 5.0

Total 361.3

Receive

Receive Overhead 1 4.9

Receive File 183.1

Receive Overhead 2 5.1

Total 193.1

Table 1. Time breakdown.

As mentioned before, the time to build the connection is by far the most costly
overhead. The time spent on the RDMA transfer, which includes setting up the
transfer on the NIC and polling for the results, is the only useful work. The time
to build the initial connection includes significant overhead due to the TCP
stack, and rivals the time to actually send 100MB of data over Infiniband.

There is a slight delay while the sender waits for the receiver's QP to be
ready. This involves the receiver sending a message to the sender, as we see it

8

takes 3 milliseconds for this to happen. Similarly it takes another 3.4
milliseconds for the sender to send the initial RDMA which includes a list of
nodes that still need the file, this includes waiting for the receiver to
acknowledge it has received the initial RDMA. Another 5 milliseconds is spent
maintaining data structures and tearing down the connections.

Looking at the Receive section of Table 1, we see there is very little time
wasted. Clearly receiving the file is more efficient because the TCP socket to
transfer the initial Infiniband connection data is already created, and waiting on
the sender. This is quite desirable because all nodes must spend time doing the
receive, but not all must participate in the sending stage. The overheads
involved in receiving the file are small (4.9 and 5.1 milliseconds), and are
basically independent of file size. So most of the time is spent doing actual
work to receive the file, actually it is passively waiting for data to be written into
its buffer, rather than actively receiving the file.

We hope to greatly speed up the connection management using a better
interface such as DAPL [3].

5.5 Arity
The remaining aspect we need to look at is arity. Arity as used here

means the number of nodes a sender is able to distribute the file to. Fig. 5
shows the effect of arity on distributing a 100MB file to 100 nodes using the
mmap_all type of send.

Fig 5. Time to send 100MB to 100 nodes, for various arities.

From the graph we can see that a binary tree is actually the best performing
type of distribution. While this may seem surprising at first, after looking at the
total send and receive times, we see that the total send time per node is in fact
quite a bit more than the total time it takes to receive per node. What we can
tell from this is that we want to minimize the number of sends that occur
sequentially and maximize the number of sends occurring in parallel.

6. Related Work
 According to [11] there are two phases to start a parallel application,

9

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

18

20

Time

Arity

T
im

e
 (

s)

process initiation and connection set up. We propose there is in fact three
phases, before a process can be started the executable has to reside locally.
Other papers have been presented which focus on the two phases described in
[11]. This is where Fast Startup comes in, and is what makes it different. MPD
[10], is meant to be a fast way of starting parallel jobs once the file resides
locally, and a flexible run time environment. In [11], the concession is made
that to eliminate the impact of network communication to file access, all files
were duplicated on local disks, further [11] mentions the file system
performance could be a big bottleneck for a larger cluster. Efficiently starting
the process once the file is there, is a vital issue to be addressed and therefore
our Fast Startup work is by no means meant to be a replacement for earlier
works, but in fact complimentary.

Two novel systems that do take into account the need to get the file
locally are yod [12] and STORM [13]. They both address the two phases that
[10] and [11] focus on, in addition they focus on what we propose as the third
phase.

 While Yod [12] does handle all three phases it is not completely scalable,
as it uses an O(N) file distribution technique. STORM [13], on the other hand, is
scalable, and handles all three phases. The drawback with STORM [13] is that it
requires the use of a hardware multicast mechanism specific to Quadrics [16]
while we use only the more general RDMA operations.

7. Conclusions & Future Work
We have presented an efficient scalable method to distribute files among

a number of cluster nodes in the context of a parallel process. We have shown
there are three potential ways to manipulate buffers during file distribution,
and we have looked at the effects of arity and chunk size on the total time to
distribute the file. We have also shown that existing methods perform and scale
poorly compared to our approach.

Future plans for Fast Startup involve more extensive scaling studies on
large cluster environments and using multiple network types. Potential
improvements specific to Fast Startup include a study on using multiple trees to
distribute the file among the nodes. Involving the specifics of the underlying
network topology in the construction of the distribution trees may be necessary
for extreme scale heterogeneous parallel machines.

10

References

1. About Infiniband Trade Association: An InfinibandTechnology Overview .
http: / /www.infinibandta.org / ib ta / .

2. RDMA Consor tium website http: / /www.rd maconsor tium.org.

3. DAT Collaborative website http: / /www.datcollaborative.org / .

4. Open PBS http: / /www.openpbs.org / .

5. MPI The message passing interface http: / / www - unix.mcs.anl.gov / mpi / .

6. P. Wyckoff. Mpiexec. http: / / www.osc.edu / ~ p w / m p iexec / .

7. Mpirun http: / /www - unix.mcs.anl.gov/m pi /www /www1 / m pi ru n.h tml.

8. Mellanox IB- Verbs API (VAPI) Mellanox Software Program mers Interface for
Infiniband Verbs, 2001.

9. Infiniband Architecture Specification vol. 1 rel. 1.1, 6 Nov 2002.

10. R. Butler, W. Gropp, and E. Lusk. Components and Interfaces of a Process
Management System for Parallel Programs. Parallel Computing , 27(11):1417
1429, 2001.

11. W. Yu, J. Wu, D.K. Panda. Scalable Startup of Parallel Programs over
Infiniband. Technical Report OSU- CISRC- 5/04 - TR33, Dept. of Computer and
Information Science, The Ohio State University, Columbus, OH 43210, 2004.

12. R. Brightwell, L.A. Fisk. Scalable Parallel Application Launch on Cplant.
Proceedings of SC2001, Denver, Colorado, November 10 16, 2001. Available
from http: / / www.sc2001.org / pa per s / p a p .pap2 63.pdf.

13. E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, S. Coll. STORM: Lightning-
Fast Resource Management. In Proceedingsof the IEEE/ACM SC2002
Conference, 2002.

14. B. Callaghan, B. Pawlowski, P. Staubach. NFS Version 3 Protocol
Specification. June 1995 available via http: / / www.cse.ohio - state.edu /cgi -
bin/ rfc / r fc1813.html.

15. LAM/MPI Parallel Computing http: / / www.lam - mpi.org /.

16. Quadrics corporate website
http: / / d oc.quadrics.com / q u a dr ics /Quad ricsHome.nsf /DisplayPages /Homepa
ge.

11

17. PLATFORM LSF Intelligent, policy- driven batch application workload
processing — for desktops, servers and mainframes.
http: / /www.platform.com / p ro d ucts /LSF/.

18. SLURM: A Highly Scalable Resour ce Manager
http: / /www.llnl.gov/linux / s lu rm / .

19. MPICH A Portable Implementa tion of MPI http: / / www -
unix.mcs.anl.gov /m pi / m pich / .

20. H.K. Jerry Chu, V. Kashyap. Transmission of IP over InfiniBand. August
2004 available via http: / / www.ietf.org /in te rne t - drafts / d raf t - ietf - ipoib- ip-
over- infiniband - 07.txt.

21. Myrinet Home Page http: / / www.myri.com /.

22. M. Singhal, N Shivaratri, Advanced Concepts in Operating Systems, Mc Graw
Hill 1994. p.98.

12

