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Abstract
One  of  the  first  steps  in  starting  a  program  on  a  cluster  is  to  get  the

executable,  which  generally  resides  on  some  network  file  server.   This  creates
not  only  contention  on  the  network,  but  causes  unnecessary  strain  on  the
network  file  system  as  well,  which  is  busy  serving  other  requests  at  the  same
time.   This  approach  is  certainly  not  scalable  as  clusters  grow  larger.   We
present  a  new  approach  that  uses  a  high  speed  interconnect,  novel  network
features,  and  a  scalable  design.   We  provide  a  fast,  efficient,  and  scalable
solution  to  the  distribution  of  executable  files  on  production  parallel  machines.
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1.  Introduction
Often  times  in  the  cluster  environment  of  today  a  program  is  executed  on

a  cluster  by  a  number  of  nodes  receiving  the  executable  code  from  a  single
source.   Sun's  Network  File  System  (NFS) [14]  is  a  prime  candidate  for  such  a
task  as  it  is  popular,  stable,  and  widely  available.   As  executables  grow  larger,
and  the  number  of  nodes  increases,  the  single  NFS server  struggles  to  handle
the  additional  load,  as  it  was  not  designed  to  handle  these  types  of  situations.
Not  only  must  NFS send  more  data  to  more  nodes,  it  also  has  to  be  available  to
service  file  requests  from  other  users  on  the  cluster.

Two  immediate  observations  show  why  using  NFS is  the  wrong  approach
for  executable  distribution.   First,  the  parallel  processes  are  cooperating  and  all
need  exactly  the  same  set  of  files  at  exactly  the  same  time.   Having  each  node
request  the  file  from  NFS independently  causes  unnecessary  load  on  the  server
and  much  duplicated  effort  among  the  clients.   Second,  high  performance
clusters  generally  have  some  sort  of  fast  interconnect  for  message  passing
traffic,  such  as  Myrinet  [21],  Quadrics  [16],  or  Infiniband  [1].   However,
installations  generally  use  a  fast  or  gigabit  Ethernet  network  for  file  system
traffic,  perhaps  because  using  NFS generally  requires  using  an  IP stack  that  may
not  be  supported  on  the  high  performance  network  or  on  the  file  system  server.

Our  approach  to  these  problems  starts  by  recognizing  the  collective
nature  of  parallel  executable  startup.   Collective  operations  appear  in  many
contexts.   In  message  passing,  the  MPI library  [5] offers  primitives  for  functions
such  as  broadcast  and  reduce  that  optimize  the  data  transfers  when  compared
to  the  equivalent  collection  of  point - to- point  primitives.   In  peer - to- peer  file
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sharing,  collectives  are  used  to  save  link  bandwidth  at  the  source  host  and  fully
utilize  all  network  paths  among  downloading  hosts.   The  parallel  startup
problem  is  similar  to  both  of  these,  but  the  nature  of  the  interconnection
network  and  the  types  and  sizes  of  files  lead  us  to  a  particular  solution.

Modern  networks  offer  features  that  can  be  used  to  enhance  message
passing  performance.   We  investigate  the  advantages  and  drawbacks  of  using
Remote  Direct  Memory  Access  (RDMA) [2]  to  perform  the  file  distribution.   It
allows  us  to  move  data  between  nodes  without  the  involvement  of  the  operating
system  or  host  processor,  exposing  opportunities  for  overlap  during  the  startup
phase.

In  Section  2,  we  have  a  brief  introduction  to  Infiniband  [1] and  RDMA [2],
followed  by  a   discussion  in  section  3  of  the  environment  that  Fast  Startup  is
intended  to  take  part.  In  section  4  we  focus  on  the  basic  layout  and  the
decisions  which  influenced  the  engineering  of  the  Fast  Startup  software.   Next
in  section  5  we  turn  to  experimental  results  to  show  that  Fast  Startup  is  indeed
a better  choice.   Section  6  looks  at  related  work  and  we  conclude  in  section  7.

2  Infiniband  and  RDMA
Infiniband  is  a  technology  to  interconnect  processor  and  I/O  nodes  to

form  a  system  area  network  [1].   It  is  a  switched,  point - to- point  network  with
high  speed  data  transfer  and  low  latency.   RDMA [2] is  a  technology  that  allows
the  transfer  of  data  directly  from  a  process  running  on  a  node  into  the  memory
of  a  process  running  on  a  remote  node.   The  OS and  CPU are  not  involved  in  this
transfer.  This  is  what  makes  RDMA  so  appealing.   Infiniband  provides  both
RDMA read  and  write  data  transfers.

As  one  of  our  target  clusters  uses  10  gigabit  Infiniband,  we  choose  that
as  the  initial  implementa tion  platform.   Other  alternatives  include  Quadrics  [16]
and  RDMA  over  Ethernet  (iWarp)  [2],  but  those  technologies  are  not  yet  as
inexpensive  or  prevalent.   However,  as  other  interconnects  mature,  we  want  to
take  advantage  of  them.   Thus,  we  were  careful  in  designing  the  code  to  allow
for  this,  as  described  in  Section  4.

3.  Resource  Management  Environment
The  collective  file  distribution  problem  is  constrained  and  orchest rated

by  the  resource  management  environment.   Production  machines  use  software
such  as  PBS [4],  Platform  LSF [17],  or  Slurm  [18]  to  control  the  assignment  of
individual  hardware  elements  in  a  parallel  machine  to  particular  tasks.   Users
submit  job  scripts  that  specify  requirement s,  such  as  number  of  processors  and
amount  of  memory,  and  a  list  of  shell  commands  to  run  to  perform  the  tasks.
MPI jobs,  in  particular,  use  a  job  launcher  such  as  mpirun  [7] or  mpiexec  [6] to
spawn  the  executable  on  each  processor  and  initialize  communications  among
the  nodes.   There  are  three  phases  to  starting  a  parallel  executable:   signaling  a
daemon  on  each  node  to  begin  a  task,  launching  the  executables  themselves,
and  initializing  communications  in  the  context  of  the  new  parallel  job.   The  final
phase,  initializing  communications  among  nodes,  has  been  the  subject  of  much
previous  work  and  is  discussed  briefly  in  Section  6.

For  the  first  phase,  the  MPI job  launcher  program  contacts  each  node  in
turn  to  instruct  it  to  fork  and   execute  one  task  of  the  parallel  process.   Using
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MPICH's  [19]  mpirun  [7],  this  involves  using  rsh  or  ssh  in  a  loop  to  contact  the
inetd  on  each  node  to  start  the  tasks.   With  LAM [15],  MPD [10], and  mpiexec  [6],
an  existing  collection  of  daemons  are  used  to  start  up  the  processes  efficiently.
In  the  case  of  mpiexec,  these  daemons  are  the  individual  resource  managers
themselves.   Regardless,  this  signaling  process  is  relatively  lightweight  in  terms
of  resource  consumption  on  the  network  and  scales  well.

The  second  phase  generally  has  each  process  independen tly  invoke  the
exec()  system  call  directly  on  a  shared  file  system,  such  as  NFS [14],  to  start  the
executable.    As  discussed  earlier,  this  activity  is  a  major  limitation  to
scalability.   Besides  the  executable  itself,  shared  libraries  associated  with  the
code  also  must  be  read  into  the  memory  of  each  node  at  this  time.   The  job  may
further  specify  common  input  files  to  be  used  by  all  the  processes.   Distributing
all  these  files  collectively  on  the  message  passing  network  is  the  subject  of  the
next  section.
 
4.  Design

The  basic  design  of  Fast  Startup  consists  of  three  components.   First,
there  is  a  transpor t  specific  module  that  currently  handles  all  the  transferring
of  data  from  a  high  level  view,  such  as  sending  and  receiving  a  file.   There  is
another  module  which  handles  helper  functions  for  the  transpor t  module,  such
as  initializing  the  Infiniband  network.   Lastly,  we  have  the  main  module  that
oversees  all  operation  of  the  application.   It  handles  making  connections,
coordinating  sending  and  receiving,  and  everything  else  related  to  the  parallel
distribution  of  the  file.

4.1  API
The  API we  have  chosen  to  use  is  VAPI [8]  which  is  the  lowest  level  API

that  enables  us  to  interface  directly  with  the  Infiniband  hardware.   This  is  a
verbs  API,  and  is  the  least  common  denominator  on  Infiniband  systems.   We
have  chosen  not  to  use  something  like  DAPL [3] because  it  is  not  very  common
yet.   Other  API's  such  as  IPoIB [20]  do  not  expose  the  necessary  function  calls  to
do  RDMA directly.   

4.2  Topology
One  of  the  most  importan t  design  considerations  is  to  use  a  tree- based

approach  for  the  distribution  of  the  files.   This  way  we  have  a  Ο( log  N)
algorithm.   Taking  a  step  back  we  can  see  this  is  already  a  better  approach  and
the  efficiency  of  the  distribution  will  out  perform  the  traditional  NFS [14]  file
distribution,  which  happens  to  scale  linearly  as  we  show  in  section  5.   

Things  can  only  get  better  by  increasing  the  performance  of  the  network.
One  of  the  aspects  we  wanted  to  look  at  is  the  effect  of  arity,  or  the  maximum
number  of  nodes  one  node  in  the  tree  may  send  to.   It  was  important  to  make
this  an  option  that  can  be  set  at  runtime.   For  extremely  large  numbers  of
nodes,  it  may  be  better  to  allow  nodes  to  send  to  more  than  just  two  others,  so
instead  of  a  binary  tree  requirement  we  have  an  n- ary  tree  flexibility.   The
biggest  advantage  of  the  tree  based  distribution  is  that  it  is  easily  scalable,
which  is  an  absolute  requiremen t  for  this  research.
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4.3  Communication  Manager  
In  the  future,  porting  this  software  to  DAPL  [3]  to  make  use  of  a

communication  manager  (CM) could  be  quite  useful.  This  would  allow  for  a
reduction  in  the  connection  build  up  time  between  nodes  that  we  have  to
endure  at  the  present  time.   More  on  this  follows.    As  of  right  now  there  is  no
accepted  standard  for  a  communication  manager  on  Infiniband  so  we  should
not  rely  on  any  one  in  particular.   

Since  we  are  not  using  DAPL [3] we  use  TCP as  a  means  of  building  up  the
initial  connection  between  two  nodes.   This  amounts  to  sending  Infiniband
connection  related  information  which  can  be  handled  more  efficiently  when
using  a  communication  manager.  We  show  the  portion  of  time  it  takes  to
complete  this  later.

4.4  File  Transfer
One  of  the  major  advantages  offered  by  this  work  is  the  utilization  of

advanced  networking  features,  namely  Remote  Direct  Memory  Access  (RDMA).
There  are,  however,  limitations  on  the  use  of  this  mechanism,  and  thus  we  have
identified  three  different  schemes  to  send  a  file.  Those  are  mmap  all, multi  send
multi  map,  and   multi  send  one  map.  All three  use  RDMA to  move  data  around.
The  differences  are  in  how  the  memory  is  allocated  and  if the  file  can  be  sent  at
one  time  or  not.   

Presently,  Infiniband  allows  a  maximum  transfer  of  2GB at  one  time  [9].
Clearly  we  need  a  way  to  send  larger  files  since  this  is  meant  to  be  scalable  in
every  aspect.   It  may  also  be  desired  that  a  limit  be  set  on  the  maximum  size
that  can  be  sent  at  one  time  to  take  advantage  of  pipelining.   One  other
importan t  configuration  choice  is  the  chunk  size.  Chunk  size  refers  to  the
amount  of  data  that  can  be  sent  at  one  time.   All  of  these  factors  significantly
impact  performance  as  we  will  see  later.

Mmap  all, as  the  name  implies,  involves  memory  mapping  the  entire  file.
On  the  Root  Node  the  file  is  opened  through  the  regular  OS method  and  mmap()
is  used  to  map  the  file  to  the  send  buffer.   There  are  no  memcpy()  calls  made.
On  the  receiving  node  an  empty  file  is  created  and  mapped  to  its  receive  buffer.
The  RDMA that  occurs  moves  the  file  directly  from  the  local  disk  of  the  root
node  to  the  local  disk  of  the  remote  node.   Now  the  node  that  just  received  the
file  can  open  the  new  local  file  and  map  it  in.

Multi- send  multi - map ,  unlike  the  above,  maps  only  portions  of  the  file
and  copies  the  data  to  a  buffer  to  send.   This  type  of  send  involves  multiple
memory  maps  to  be  made.   This  is  essential  to  support  large  files.   It  may  be  the
case  that  the  file  being  transferred  is  too  large  to  fit  into  a  contiguous  area  of
memory,  thus  requiring  multiple  memory  maps.

 Similarly,  multi - send  one- map  sends  the  file  in  chunks.  The  difference  is
that  multi - send  one- map  will  map  the  entire  file  on  both  ends  like  with  mmap
all .   This  achieves  the  greates t  performance,  but  the  available  memory  may  not
always  be  available  to  hold  the  entire  file  at  one  time.

In  both  of  the  multi  send  methods  the  sender  will  poll  its  completion
queue  [9] to  verify  the  send  request  was  properly  formatted  and  wait  for  an
acknowledgment  from  the  remote  node  that  it  has  received  and  processed  the
data.   The  remote  node  knows  when  data  has  been  received  by  polling  its
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completion  queue.   It  is  an  RDMA write  with  immediate  data  [9] that  makes  this
possible.   We show  the  performance  implications  of  the  three  send  types  in  the
next  section.   We  support  all  three  send  types  in  the  software  to  ensure  that
Fast  Startup  can  handle  any  size  file.

 5.  Results
The  results  that  follow  were  gathered  on  OSC's  P4  Cluster  which  includes

112  compute  nodes  connected  with  10  gigabit  Infiniband  and  1  gigabit  Ethernet.
Each  with  two  2.4  GHz  Intel  P4 Xeon  processors  and  4GB of  RAM.   The  file  sizes
used  may  seem  quite  large  compared  with  the  common  executable.   This,
however,  is  intentional.   It  is  meant  to  show  the  scalability  of  Fast  Startup,  and
is  motivated  by  the  need  to  send  shared  libraries  and  input  files.   It  should  be
noted  that  all  data  was  gathered  on  a  2- ary  (binary)  tree,  with  the  exception  of
the  last  data  set  which  looks  at  multiple  arities.  

5.1  Total  Time  to  Distribute
One  of  the  most  important  measures  we  need  to  look  at  is  the  overall

time  to  distribute  the  file  to  a  number  of  nodes.  Having  measured  the  mean
time  it  takes  to  send  a  100MB file,  361  milliseconds,  and  the  mean  time  it  takes
to  receive  a  100MB file,  193  milliseconds  (see  table  1),  we  can  know  how  long  it
will  take  to  distribute  amongst  a  varying  number  of  nodes.   Using  the  send
history  of  runs  of  various  size  nodes,  from  2  to  100  in  increments  of  3,  we  can
plug  in  the  mean  send  and  receive  times  to  calculate  the  total  expected
distribution  time.   We do  this  in  software  to  account  for  the  parallelism  of  a  tree
based  distribution.  We now  have  the  most  general  case  possible  of  sending  to  a
certain  number  of  nodes.   The  results  are  shown  in  Fig 1.

The  reason  we  do  not  measure  this  directly  is  because  it  is  difficult  to  get
a  very  accurate  result  without  the  notion  of  a   global  clock,  which  is  not  possible
to  achieve  [22]. The  root  node  is  the  only  node  that  knows  when  the  distribution
started,  and  the  only  way  for  it  to  know  when  the  distribution  is  completed  is  to
have  every  node  report  when  finished.   This  adds  significant  overhead  and
skews  the  result.  The  same  situation  arises  in  section  5.5.

Fig 1.   Time  to  distribute  100MB.
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We see  some  flat  areas  on  the  graph,  and  that  illustrates  perfectly  the  advantage
gained  from  a tree  based  algorithm.   The  flat  areas  are  due  to  different  numbers
of  nodes  receiving  the  file  in  the  same  amount  of  sends.   Ultimately  the  cause  of
this  is  the  ability  to  have  many  sends  and  receives  happening  in  parallel  with
each  other.   

It  is  also  good  measure  to  compare  this  with  how  long  it  takes  NFS to
distribute  to  a  certain  number  of  nodes.   Data  in  Fig 2  was  generated  on  OSC's
large  mass  storage  system.   This  is  comprised  of  multiple  dual  P4  2.4GHz  with
SCSI RAID disks  and  a  1Gbps  Ethernet  interface.   These  NFS servers  fan  out  via
high  performance  switches  to  connect  to  the  compute  nodes  on  the  cluster.
Due  to  the  fact  that  NFS is  so  slow  and  inefficient  we  have  only  tested  NFS up  to
30  nodes.   See  Fig 2.

Fig 2.   Time  to  distribute  100MB, NFS compared  to  Fast  Startup.

We can  see  from  Fig. 2  that  it  takes  roughly  1.5- 2  seconds  per  node.   While  with
Fast  Startup  and  Infiniband  it  takes  roughly  3  seconds  to  distribute  to  100
nodes.   Potential  reasons  for  the  poor  performance  of  NFS  include,  lack  of
server  software  stack  scalability  and  heavy  load  on  the  network.   We  see  30
nodes  take  roughly  70  seconds  to  receive  100MB  each.  This  is  an  aggregate
bandwidth  of  43MB/s,  well  under  the  potential  125MB/s  available  in  the  gigabit
Ethernet  network.   Therefore,  we  suspect  the  biggest  drain  on  performance
comes  from  the  overheads  associated  with  the  NFS  protocol  and  costly
send / r eceive  network  semantics  rather  than  problems  with  load  on  the  network.

5.2  Basic  Send  Performance
We next  look  at  how  long  Fast  Startup  takes  to  send  a  certain  amount  of

data.   Using  files  ranging  from  4KB all  the  way  up  to  1GB we  show  the  rate  at
which  Fast  Startup  can  send  the  file  to  the  remote  node,  including  all  overhead
incurred  by  our  software.   Then  the  remote  node  saves  the  file  locally  and
acknowledges  the  sender.   The  data  in  Fig.  3  represents  the  mean  time  to  send
the  various  file  sizes.   The  mean  was  taken  over  a  large  number  of  trials.  The
standard  deviations  of  these  means  were  always  less  than  1%.  We see  that  the
mean  is  pret ty  accurate,  and  that  the  trend  of  the  graph  is  very  linear  as  we
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would  expect.   The  slope  is  linear  across  the  entire  range.  

Fig 3.   Time  to  send  various  size  files.

A small  4KB executable  took  almost  no  time  (0.3  milliseconds),  while  even   the
1GB file  takes  less  than  2  seconds.  The  mean  time  to  send  a  100MB file  is  169
milliseconds,  which  we  will  look  at  as  a  general  case  through  out.

5.3  Chunk  Size
Another  interesting  performance  aspect  that  we  wanted  to  look  at  is  the

effect  of  chunk  size.   We can  see  what  impact  chunk  size  and  the  type  of  send
has  on  the  overall  performance  by  looking  at  Fig. 4.   The  graph  in  Fig. 4  depicts
the  mean  time  to  send  a  100MB file.   As  with  the  above,  this  time  includes  the
time  to  send  the  file  to  the  remote  node,  then  for  the  remote  node  to  save  the
file  locally  and  acknowledge  the  sender.  

Fig 4.   Time  to  send  in  chunks.

From  the  above  graph  we  see  that  a  mmap_all   is  far  superior  to  the  other  two.
This  is  due  to  the  overhead  involved  in  each  RDMA operation.   The  reason  that
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the  mmap_all  line  is  flat  is  that  chunk  size  has  no  effect  since  the  file  is  sent  all
at  once  with  this  type  of  send.   The  reason  for  even  having  the  other  two  types
of  sends  are  for  files  larger  than  can  be  sent  in  one  send  through  the
interconnect.   

The  multi - send  multi - map  type  performs  slightly  worse  than  multi - send
one- map.   As  we  can  see  the  two  lines  start  to  get  closer  and  closer  together.
This  is  as  expected  because  as  we  increase  the  size  that  we  are  mapping  it  is
getting  closer  to  one  large  mapping.   Clearly  we  want  to  map  as  much  as
possible  at  one  time,  and  minimize  the  number  of  mappings  that  we  need  to  do
in  order  to  gain  the  best  performance.   

The  lesson  to  be  learned  here  is  that  if  a  file  can  not  be  sent  in  one  send
due  to  restrictions,  either  on  the  interconnect  or  the  restrictions  on  mapping
memory,  it  is  best  to  make  the  chunk  size  as  large  as  possible  and  use  the
multi - send  one- map  type  of  send.   Unfortunately  mapping  memory  turns  out  to
be  the  biggest  problem  due  to  the  fact  that  it  needs  to  map  contiguous  area  of
memory,  so  for  large  files,  lots  of  memory  is  needed.   

5.4  Time  Breakdown
For  the  mmap_all  case  we  break  down  the  entire  process  of  sending  and

receiving  a  file  to  see  just  where  the  time  is  spent  and  how  much  time  is  spent
in  each  stage.   Over  many  nodes  the  average  to  send  a  100MB  file  is  361.3
milliseconds.   This  time  is  different  than  that  shown  in  Fig.  3  as  it  is  the  total
send  time  which  includes  all  overheads.   The  components  that  make  up  this
time  are  illustrated  below  in  Table  1.

Send Event Time Spent (ms)

Build Connection 178.0

Wait QP Ready   3.0

Send Initial RDMA   3.4

RDMA Executable 171.9

Send Overhead   5.0

Total 361.3

Receive

Receive Overhead 1   4.9

Receive File 183.1

Receive Overhead 2   5.1

Total 193.1

Table  1.   Time  breakdown.

As  mentioned  before,  the  time  to  build  the  connection  is  by  far  the  most  costly
overhead.   The  time  spent  on  the  RDMA transfer,  which  includes  setting  up  the
transfer  on  the  NIC and  polling  for  the  results,  is  the  only  useful  work.  The  time
to  build  the  initial  connection  includes  significant  overhead  due  to  the  TCP
stack,  and  rivals  the  time  to  actually  send  100MB of  data  over  Infiniband.

There  is  a  slight  delay  while  the  sender  waits  for  the  receiver's  QP to  be
ready.   This  involves  the  receiver  sending  a  message  to  the  sender,  as  we  see  it
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takes  3  milliseconds  for  this  to  happen.   Similarly  it  takes  another  3.4
milliseconds  for  the  sender  to  send  the  initial  RDMA which  includes  a  list  of
nodes  that  still  need  the  file,  this  includes  waiting  for  the  receiver  to
acknowledge  it  has  received  the  initial  RDMA.  Another  5  milliseconds  is  spent
maintaining  data  structures  and  tearing  down  the  connections.

Looking  at   the  Receive  section  of  Table  1,  we  see  there  is  very  little  time
wasted.  Clearly  receiving  the  file  is  more  efficient  because  the  TCP  socket  to
transfer  the  initial  Infiniband  connection  data  is  already  created,  and  waiting  on
the  sender.   This  is  quite  desirable  because  all  nodes  must  spend  time  doing  the
receive,  but  not  all  must  participate  in  the  sending  stage.  The  overheads
involved  in  receiving  the  file  are  small  (4.9  and  5.1  milliseconds),  and  are
basically  independent  of  file  size.   So  most  of  the  time  is  spent  doing  actual
work  to  receive  the  file,  actually  it  is  passively  waiting  for  data  to  be  written  into
its  buffer,  rather  than  actively  receiving  the  file.

We hope  to  greatly  speed  up  the  connection  management  using  a  better
interface  such  as  DAPL [3].

5.5  Arity
The  remaining  aspect  we  need  to  look  at  is  arity.   Arity  as  used  here

means  the  number  of  nodes  a  sender  is  able  to  distribute  the  file  to.   Fig.  5
shows  the  effect  of  arity  on  distributing  a  100MB  file  to  100  nodes  using  the
mmap_all  type  of  send.

Fig 5.   Time  to  send  100MB to  100  nodes,  for  various  arities.

From  the  graph  we  can  see  that  a  binary  tree  is  actually  the  best  performing
type  of  distribution.   While  this  may  seem  surprising  at  first,  after  looking  at  the
total  send  and  receive  times,  we  see  that  the  total  send  time  per  node  is  in  fact
quite  a  bit  more  than  the  total  time  it  takes  to  receive  per  node.   What  we  can
tell  from  this  is  that  we  want  to  minimize  the  number  of  sends  that  occur
sequentially  and  maximize  the  number  of  sends  occurring  in  parallel.

6.  Related  Work
 According  to  [11]  there  are  two  phases  to  start  a  parallel  application,
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process  initiation  and  connection  set  up.   We  propose  there  is  in  fact  three
phases,  before  a  process  can  be  started  the  executable  has  to  reside  locally.
Other  papers  have  been   presented  which  focus  on  the  two  phases  described  in
[11].   This  is  where  Fast  Startup  comes  in,  and  is  what  makes  it  different.   MPD
[10],  is  meant  to  be  a  fast  way  of  starting  parallel  jobs  once  the  file  resides
locally,  and  a  flexible  run  time  environment.   In  [11],  the  concession  is  made
that  to  eliminate  the  impact  of  network  communication  to  file  access,  all  files
were  duplicated  on  local  disks,  further  [11]  mentions  the  file  system
performance  could  be  a  big  bottleneck  for  a  larger  cluster.   Efficiently  starting
the  process  once  the  file  is  there,  is  a  vital  issue  to  be  addressed  and  therefore
our  Fast  Startup  work  is  by  no  means  meant  to  be  a  replacement  for  earlier
works,  but  in  fact  complimentary.

Two  novel  systems  that  do  take  into  account  the  need  to  get  the  file
locally  are  yod  [12]  and  STORM  [13].   They  both  address  the  two  phases  that
[10]  and  [11]  focus  on,  in  addition  they  focus  on  what  we  propose  as  the  third
phase.

 While  Yod  [12]  does  handle  all  three  phases  it  is  not  completely  scalable,
as  it  uses  an  O(N) file  distribution  technique.   STORM  [13],  on  the  other  hand,  is
scalable,  and  handles  all  three  phases.   The  drawback  with  STORM  [13]  is  that  it
requires  the  use  of  a  hardware  multicast  mechanism  specific  to  Quadrics  [16]
while  we  use  only  the  more  general  RDMA operations.

7.  Conclusions  & Future  Work
We have  presented  an  efficient  scalable  method  to  distribute  files  among

a  number  of  cluster  nodes  in  the  context  of  a  parallel  process.   We have  shown
there  are  three  potential  ways  to  manipulate  buffers  during  file  distribution,
and  we  have  looked  at  the  effects  of  arity  and  chunk  size  on  the  total  time  to
distribute  the  file.   We have  also  shown  that  existing  methods  perform  and  scale
poorly  compared  to  our  approach.

Future  plans  for  Fast  Startup  involve  more  extensive  scaling  studies  on
large  cluster  environments  and  using  multiple  network  types.   Potential
improvements  specific  to  Fast  Startup  include  a  study  on  using  multiple  trees  to
distribute  the  file  among  the  nodes.   Involving  the  specifics  of  the  underlying
network  topology  in  the  construction  of  the  distribution  trees  may  be  necessary
for  extreme  scale  heterogeneous  parallel  machines.
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