
Accelerating Web Protocols Using RDMA
To appear in the Proceedings of NCA’07, Cambridge, MA, July 2007.

Dennis Dalessandro
Ohio Supercomputer Center

1 South Limestone St., Suite 310
Springfield, OH 45502

dennis@osc.edu

Pete Wyckoff
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, OH 43212

pw@osc.edu

Abstract

High-performance computing, just like the world at
large, is continually discovering new uses for the Inter-
net. Interesting applications rely on server-generated
content, severely taxing the capabilities of web servers.
Thus it is common for multiple servers to run a single
site. In our work, we use a novel network feature known
as RDMA to vastly improve performance and scalabil-
ity of a single server. Using an unmodified Apache web
server with a dynamic module to enable iWARP (RDMA
over TCP), we can handle more clients with lower CPU
utilization, and higher throughput.

1 Introduction
The web has emerged as the dominant mechanism

for communication on the Internet at large. While traf-
fic that is internal to a machine, or a cluster, may use an
exotic technology, such as InfiniBand, information that
leaves the machine is almost always carried via TCP/IP
packets over Ethernet. High-performance computing
(HPC) continues to move towards more distributed inter-
actions, with the development of grid portals [14], web
services [13], remote data repositories [18], and program
composition based on component architectures [2].

A significant example of the current need for high-
throughput web-based communication is to access re-
mote databases. The National Cancer Institute hosts
a Specimen Resource Locator [18] from which re-
searchers can search and download information about
a variety of tumor and tissue samples. This is pro-
vided solely as a web service, transporting all data
across HTTP or HTTPS. Another need in the biomed-
ical field involves distributed images used in virtual mi-
croscopy [24], where a remote machine generates com-
posite high-resolution images on demand for any num-
ber of clients in clinical settings.

An example of a high-performance computing
project that relies on efficient web data transfers is Grid-

Chem [11]. This project provides an infrastructure
for computational computing in a distributed environ-
ment. The GridChem client application communicates
with middleware services to launch and monitor parallel
calculations on remote supercomputers using CGI [23]
scripts. The software is evolving to take advantage of
existing Web Service frameworks, where the transport
layer will be XML-encoded documents over HTTPS.
Formatting, compressing, and delivering or receiving
large files quickly, requires a large amount of process-
ing power on the server.

Today it is common for web content to be in the
range of a few kilobytes to a megabyte. It is a sure
bet that HPC needs will require larger data transfers and
use more processing power to create dynamic content.
For the rest of the world, applications such as stream-
ing video and online game play, as well as the sheer in-
creased usage, will drive the processing needs of web
servers beyond what is available in a single server.

With the prevalence of data transport via web proto-
cols and the abundance of high-speed networks, sources
of performance bottlenecks are often found at the web
server itself. Techniques to improve server performance
exist, such as round-robin DNS or active monitoring for
load balancing, and the use of functional decomposition
among multiple cooperating tiers of machines. How-
ever, the data transport interface itself serves as a ma-
jor performance limitation. Improvements at this inter-
face are often overlooked due to the entrenched nature
of HTTP over TCP/IP in web communications. The
iWARP protocols, or RDMA over Ethernet, offer a way
to reduce server load, increase data throughput, and
hence overall scalability, while still using the existing
TCP/IP transport that is capable of communication in
the commodity Internet.

Unfortunately, deployment of new protocols is dif-
ficult. As evidenced by longitudinal studies of IP and
TCP behavior in web servers [17, 20], adoption of new
features is painfully slow. New protocols are even less
likely to see usage in the Internet at large, as illustrated

by the slow adoption of IPv6 and SCTP, for instance.
Proposing that all web clients switch to a new proto-
col such as iWARP, especially where that adoption may
not directly help an individual client’s performance, is
clearly not a viable approach.

On the other hand, certain environments can take
advantage of iWARP as a web transport today. In
high performance computing, communicating clients
and servers are often part of the same organization, or
part of a collaborative environment like a grid. These
machines are likely to share software stacks for authen-
tication, data management, and computation, thus mak-
ing it easier to promulgate changes across the group. We
showcase this by implementing an iWARP module for
the popular Apache [1] web server.

2 Background
The Apache HTTP Server [1] has been the most pop-

ular web server for the last decade. According to the
January 2007 Netcraft survey [19] consisting of over
100 million web sites on the Internet, 60% of sites use
the Apache server. It is highly configurable and built
around an extensible framework that allows the use of
third-party modules to affect the behavior of the server
in many ways. Modules have access to the web serv-
ing pipeline by registering “hooks” at any of around 30
different locations in the code. Our work takes advan-
tage of these hooks to add configurable support for the
iWARP protocols.

2.1 RDMA and iWARP

Remote Direct Memory Access (RDMA) is a tech-
nique that has been used, for many years in HPC envi-
ronments, but recently has seen a growth in popularity.
Progressing from the introduction of hardware using the
Virtual Interface Architecture (VIA) [4] almost a decade
ago, then InfiniBand, and recently 1 Gb/s and 10 Gb/s
Ethernet cards based on the iWARP specifications [21],
the broader computing market has been recognizing the
advantages of RDMA.

The need for RDMA in networking is motivated by
the cycle-hungry nature of traditional packet processing,
and the multiple copies of data that load the memory bus,
limiting scalability and interfering with applications. To
avoid these CPU and memory bottlenecks, RDMA al-
lows network adapters to move data directly from one
machine to another without involving either host pro-
cessor. RDMA-capable adapters also bypass the oper-
ating system, meaning that user applications interact di-
rectly with the network cards to initiate transfers, and
designate locations for incoming messages. This avoids
the overhead associated with system calls, hardware in-
terrupts, and context switches. As a result, latency and
overhead of data movement is significantly reduced.

The iWARP protocol stack consists of an applica-
tion programming interface, called a verbs layer due
to the flexibility of the suggested interface specifica-
tion [15]. Below verbs are three layers that each add
separate functionality to the protocol stack. The RDMA
protocol layer [22] provides read and write services that
allow data to be transferred directly to and from appli-
cation buffers without intermediate copies. It is built
on a Direct Data Placement (DDP) layer [25] that pro-
vides a mechanism for incoming data to be placed di-
rectly into user buffers. To function across the byte-
oriented streaming TCP protocol, DDP uses Marker
PDU Aligned (MPA) Framing [5] to insert markers into
the stream that can be used by the receiver to discover
frame boundaries.

2.2 Devices and Programming Interfaces

Devices that support the iWARP protocol, known as
RNICs, are beginning to appear on the market. An
RNIC generally has two important characteristics: op-
erating system (OS) bypass, and zero-copy data move-
ment. The OS bypass mechanism enables a user appli-
cation to communicate directly with the RNIC device,
without invoking operating system functions. The zero-
copy aspect means that the device is able to move data
directly to and from memory, without the need to make
intermediate copies of the data.

Our current software targets the NetEffect RNIC, and
builds on our previous work with iWARP [6, 7, 8]. As
for the API, we have chosen to use OpenFabrics. For-
merly known as OpenIB, the OpenFabrics project sup-
ports an open source API and software device interface
for a variety of RDMA-capable devices. The goal of the
OpenFabrics project is to realize this API in the context
of the Linux kernel and to encourage an infrastructure
built around this interface. By using the OpenFabrics
API, we enable other vendors’ RNICs, and even Infini-
Band devices, to use our Apache module code unmodi-
fied.

2.3 Software iWARP

There is a natural evolutionary path toward using
RDMA in a commodity Internet environment. While
devices that support RDMA over TCP in hardware are
becoming more common and less expensive, more than
one software implementation is available. Implementing
the RDMA protocol in software is not as efficient as us-
ing hardware, but it provides a method to deploy RDMA
protocols using traditional Ethernet devices. This means
that servers equipped with RNICs can take advantage
of that hardware even if clients do not have hardware
iWARP.

In previous work, we discussed two related software
iWARP implementations, and continue to make the code

GET /index.html HTTP/1.1
Host: www.osc.edu
User-Agent: Mozilla/5.0
Connection: Keep-Alive
RDMA: server-writes, ip=10.0.0.15, port=3242,
stag=642, to=0, maxlen=1048576

Figure 1. Example GET request headers.

available to the open source community [16]. One exists
purely in user-space, and can be used by any applica-
tion by linking in a library that generates the appropriate
RDMA packets using the standard sockets interface [9].
Another method involves implementing the RDMA calls
as a kernel service [10]. Both user-space and kernel-
resident applications can invoke RDMA services di-
rectly through the operating system, with slightly better
performance. One other implementation has been re-
ported [3], though it provides only a sockets-based API
and has not yet been made available to the community.

The availability of software implementations of
iWARP provides the bridge between current commod-
ity Internet devices and devices that will be able to han-
dle higher throughput networks. While implementing
iWARP on a client machine does not improve perfor-
mance for that particular client, a server with an RDMA-
enabled network device can offload its communication
work to the RNIC and serve more clients at a faster rate.

It is not necessary to deliver specially-compiled ver-
sions of applications to use software iWARP. Web
browsers, in particular, often provide a plug-in interface
that can be configured at runtime to extend the browser.
Software iWARP can be delivered as a plug-in module
and effectively turn a regular Ethernet device into a vir-
tual RNIC.

3 Design
The most fundamental design decision we had to

make was which web server to use. There are numerous
possibilities, including writing our own from scratch.
Implementing a trivial web server can be accomplished
in just a few hundred lines of C code. However, we de-
cided to use the Apache HTTP Server [1]. This deci-
sion was motivated largely by the fact that Apache is the
most popular web server in use today. The modular ar-
chitecture of Apache also made it possible to implement
the changes we would need to establish RDMA data
transfers. The other web servers we considered would
have required substantial changes to their architectures,
which would have resulted in a basic rewrite of the entire
web server.

3.1 Header Fields

Another important design decision is the changes
that would be required to the HTTP protocol. Our
goal was to keep any changes to a minimum and to

ensure backward compatibility with non-RDMA web
clients and servers. At first we considered adding a new
method, similar to the existing GET, only implemented
for RDMA. It was determined that adding a new method
would require rather extensive changes to the Apache
code base and duplication of much of the existing func-
tionality that implements GET. It is possible to use the
existing GET method and just add a single new entity-
header field. With this new header field it is possible to
express the information needed to build up an RDMA
connection, and conduct the RDMA data transfer.

The new header field we have added is simply
“RDMA.” The potential information that can be in-
cluded in this header is: the RNIC IP and port number,
the steering tag (STag), the tagged offset (TO), choice of
RDMA mechanism, and maximum length. An example
GET request is shown in Figure 1. The RNIC IP is nec-
essary as RNIC devices may have two IP addresses, one
for the usual TCP data path and another for the RDMA
data path. Supplying a port number avoids the need to
assign a well-known port number, and permits multiple
RDMA-enabled clients or servers on the same machine.

The STag and TO are identifiers used to describe a
region in memory for an RNIC. These are explained in
more detail in the RDMA specification [22]. An STag is
a 32-bit opaque value that maps to a registered memory
region. The TO is a 64-bit value that specifies either the
exact address in memory to access, or an offset from the
memory pointed to by the STag, depending on the type
of memory region used. While the RDMA specifica-
tions support the use of physical addressing for kernel-
resident processes, all our addresses are virtual.

The maximum length parameter in the RDMA header
field specifies the size of the buffer allocated for RDMA
transfers. For one of our data transfer schemes, dis-
cussed in the next section, the server will write data to
the client before the client knows the expected content
length.

3.2 RDMA Data Transfer Schemes

As mentioned in the previous subsection, there are
two RDMA mechanisms for GET requests, although
only one is supported in our current implementation. As
of now, only the GET method is supported; however,
possible RDMA mechanisms for the POST method will
be described in this section as well.

Supported in our current implementation is the
server-writes scheme. The server-writes case is shown
in Figure 2a, for the GET method. As the name implies
this is when the server takes the initiative and pushes the
data to the client. A client issues a GET request, with an
RDMA header that specifies all of the information out-
lined above, it is assumed by the server that the memory
to write data into on the client is already allocated and

TCP HTTP request

RDMA connect

RDMA write

TCP HTTP response

client server

TCP HTTP request

RDMA connect

TCP HTTP response

client server

RDMA read

RDMA ack

Figure 2. RDMA data transfer schemes:
a) server-writes, b) client-reads.

pinned at the time of the request, issues related to mem-
ory pinning are explored in section 3.4. Upon receipt of
the request the server writes the data to the client. Then
to alert the client that the RDMA write has finished, the
server sends the usual 200 OK response described in the
HTTP RFC [12].

The other RDMA transfer scheme, which is un-
supported in our current implementation, for the GET
method is the client-reads, shown in Figure 2b. In this
case the client issues the GET request omitting the TO
and STag. The server allocates and pins the memory
needed as well as preparing the buffer. The server then
replies with the usual 200 OK response, this time includ-
ing an RDMA header to signify to the client where to
read the data from. After sending the response the server
must wait to receive a message from the client signaling
that the RDMA read has completed. This message is an
untagged message and its acceptance is determined by
polling a completion queue. By utilizing the comple-
tion queue mechanism it is possible to either implement
a blocking poll or a non-blocking poll. For details on
completion queues and untagged messages refer to [15].

A POST method would offer two similar choices for
RDMA transfers, except instead of server-writes, we
now have client-writes, and instead of client-reads we
would have server-reads.

A client-writes case would mean the client issues a
POST request. The server would then respond with a
200 OK response, that includes the RDMA header, with
the information needed for the client to do an RDMA
write to the server’s buffer. The server then waits for an
untagged message to arrive from the client to signal that
the client is done doing the RDMA write.

The other RDMA mechanism for the POST method
is server-reads. The client issues the POST request, with
all of the information in the RDMA header needed for

the server to read the data. The server then responds
with the usual 200 OK reply to signify that the RDMA
read has completed.

3.3 RDMA connection establishment

It is important that the client listen for an RDMA con-
nection before sending its request on the active HTTP
connection. The reason for initiating the listen prior to
sending the request is to ensure that the client is ready
for the connection as soon as the server is. The server ac-
tively connects to the client at the RNIC IP address and
port number supplied in the HTTP request. Implement-
ing the RDMA connection request from the client to the
server would require an extra round-trip communication
in the server-writes case: the server must respond with
its RDMA port number before the client can initiate the
connection. The client-reads case could be modified to
let the client initiate the RDMA connection without ex-
tra communication steps, but it offers no advantages,
except perhaps to bypass overly restrictive firewalls or
work around isolated hosts that communicate through
NATs.

If a client issuing a GET request specifies a maximum
length that is smaller than the requested resource the
server can respond with an error message. Likewise for
the client if a server specifies the maximum length and
the resource the client wants is larger, the client knows
not to bother attempting an RDMA GET request.

3.4 Memory Pinning

One of the biggest design questions is how to deal
with pinning and unpinning of buffers on the server end.
When the client makes a request we allocate and regis-
ter the memory. The question is how long to hold this?
In the server-writes case, write completion indicates that
it is possible to release the buffer. In general, there are
a number of options, such as waiting for a certain time
limit, or letting the client reply with a special DONE
message as is the case with the client-reads RDMA GET
operation. To minimize the need to send any extra mes-
sages, which in the WAN could be especially costly, we
decided it best to utilize the completion mechanisms to
determine when an RDMA write had finished. This was
easy to do and fit well with the HTTP scheme. Once the
RDMA write was done we send a successful HTTP re-
ply. The problem was for RDMA read from the client’s
point of view, there is no way for the server to know
when the client has finished reading. So there must be
some kind of message sent back from the client. We
can not use the HTTP reply as in the server-writes case
because the HTTP reply has to be used to inform the
client of the STag and TO to RDMA read from. We are
left with two options: use the RDMA channel to send a
DONE message from the client, or use the TCP channel

to do this. It is less of an impact to simply delay Apache
while waiting on the RDMA channel. If we were to use
the TCP channel, additional work would be required in-
cluding possible modifications to the Apache core.

4 Implementation
As mentioned previously, our software takes advan-

tage of hooks within Apache to enable new functional-
ity. The following paragraphs explore where our RDMA
module, which we refer to as mod rdma, interacts with
the Apache server.

4.1 Apache Interactions

Child Init The term “child” means a separate server
process, not a separate thread. This hook allows for per-
process initialization. In mod rdma, we open the RNIC
device and initialize structures for each process to use
to represent its state, including queue pair and connec-
tion queue descriptors, remote client information, and
buffers.
Pre-Connection Each new TCP connection from a
client causes this hook to be called. We build a per-
connection state structure and register a handler that will
clean up the connection state when the server terminates
communication with the client.
Insert Filter This hook is invoked by Apache once for
each request (many of which may occur per connection),
after the request fields have been validated, file system
access checks have been performed, and a handler has
been chosen for the request. We use this opportunity to
look for the RDMA header, and if present, initialize an
RDMA connection to the client if one does not already
exist, and attach an output filter to Apache’s processing
chain.
Output Filter Apache uses a “bucket brigade” data
structure to pass all data through a series of configurable
filters. Most modules use input and/or output filters
to modify incoming requests and convert outgoing re-
sponses. Our filter holds onto the header of the response,
then uses RDMA to send the data (or register it for the
client to read), then finally sends the headers down the
filter chain once the end of the request has been detected.

4.2 Dynamic Content

Dynamic content, such as that created by PHP or CGI
scripts, is a vital component of today’s web servers. Due
to the design of Apache and its interaction with PHP
and CGI processing elements, we need to do nothing
special in our RDMA implementation. Apache invokes
PHP or Perl to process the request from the client and
returns plain text HTML content which our RDMA layer
handles as usual.

There are some issues worth mentioning when con-
sidering dynamic page content. First, the dynamic na-

ture of PHP and CGI content means that caching is
pointless for the server, in most cases. Secondly, the
benefit of RDMA really becomes prevalent as shown
later in Section 5. Since dynamic page creation requires
more CPU activity, the host-resident TCP stack suffers.
Since RDMA does not need the CPU to conduct net-
work transfers, it can continue unhindered by the extra
load on the CPU. A similar issue arises with encryption
(TLS/SSL), in that the CPU must deal with these expen-
sive conversions, starving the network.

4.3 Limitations

There are a few limitations brought about by the im-
plementation. The extra cost of the RDMA connec-
tion, as mentioned previously, is one. Another is that
our module, as with any real-world RDMA based ap-
plication, must deal with memory registration. In or-
der to register memory, a fair amount of CPU overhead
is needed. We have two options currently for mem-
ory registration: pre-register a static buffer, or dynam-
ically register a new buffer for every transfer. Doing the
dynamic registration is straightforward, but introduces
some overhead in the critical path.

It is possible to register a large chunk of memory
ahead of time, for each process. This would occur dur-
ing startup and not during the critical path for serving
files, then the buffer can be reused for every transfer.
The downside is that each server thread or process has
to register enough memory to serve its largest file size.
These issues are explored further in the following sec-
tion.

The issue of moving the data into a pre-registered
buffer is also a problem. Often the data comes from disk,
which appears in our module in the form of an open file
descriptor. We have to then either read the contents of
the file into an RDMA buffer, or we have to memory
map the open file descriptor and then register that mem-
ory. These both come at a cost, and are a function of file
size.

On the other hand, if data is not coming from disk,
as is the case with dynamically generated content, there
is still a memory copy required to move the data to the
RDMA buffer. This puts mod rdma at a disadvantage,
because now we are introducing an extra memory copy,
exactly what RDMA strives to avoid.

5 Experimental Results
Next we present the experimental results gathered to

test our RDMA-enabled web server. The test environ-
ment consists of 15 compute nodes in OSC’s Network
Research Cluster. These dual AMD Opteron 250 nodes
have 2 GB of DDR RAM and an on board Tigon 3
Gigabit Ethernet NIC. For client software we run the
popular web-fetch utility, wget, which links in our soft-

ware iWARP library [9]. The clients are connected to a
Cisco 6506 switch, which has a latency of around 20 mi-
croseconds. Connected to this Cisco switch via 10 Gi-
gabit SR Fibre is a Fujitsu XG1200 switch. The Fu-
jitsu switch, when running in cut through mode has a la-
tency of less than 500 nanoseconds. The servers that we
use, are equipped with a NetEffect 10 Gigabit iWARP
adapter, and a 10 gigabit Ethernet adapter from Intel.
Both cards are PCI-X, although the NetEffect card is
in PCIe form factor; it has a PCI-X bridge chip. The
servers are also dual AMD Opteron based, and have
2 GB of DDR RAM. Naturally the servers run Apache,
with our mod rdma module linked in.

Since we are interested in improving server perfor-
mance when the server is under heavy load, we only
run on 1 CPU, and we utilize two background processes
which calculate a large number of trigonometric com-
putations non stop. By changing the nice value of these
processes, we ensure they consume nearly 100% of the
CPU at all times. In effect we simulate a web server
which is completely bogged down by a large number of
clients.

5.1 Hidden Costs

As mentioned previously, one of the limitations to our
approach is that we have to build up an RDMA connec-
tion from the server to the client. In order to avoid this,
we would be required to have a full iWARP version of
Apache which would require serious internal changes,
rather than an add-on for the already existing web server.

In our experiments we have determined that on aver-
age, in our LAN it takes around 500 µs to establish an
RDMA connection, on an unloaded server. If the server
is under heavy load it can take anywhere from 600 µs to
a full 3 seconds just to establish the RDMA connection,
depending on the number of outstanding clients.

The good news is that this connection cost must only
be endured one time. A client can make multiple re-
quests for files reusing the existing connection, accord-
ing to the HTTP protocol.

Size No Load Full Load
2 kB 26.7 µs 1.56 s
4 kB 33.7 µs 1.56 s

500 kB 619.7 µs 1.40 s
1 MB 1350.2 µs 1.56 s
8 MB 12606.6 µs 1.88 s

Table 1. Memory registration costs.

Another hidden cost is memory registration. From
previous experience we know that memory registration
is very CPU intensive. The data shown in Table 1 illus-
trates this point. When the CPU is not loaded, it is only
a matter of microseconds to register even a large chunk
of memory. On the other hand when the CPU is under

heavy strain, the time to register memory is significantly
increased. To register even a small amount of memory
requires more than a full second when the processor is
heavily utilized.

Due to the fact that memory registration is so costly
when the processor is burdened, this could have an im-
pact on performance, and is the reason that in the fol-
lowing graphs we show two cases, one which we refer
to as the static case and the other as the dynamic case.

In static registration, we allocate a single buffer, to
be reused for each file requested. As mentioned before
this may not be a desirable scheme for the real world,
but part of our ongoing research is into a new way to
transfer data that would enable us to register memory
in a more efficient manner, where the effects would not
be seen during the critical path here. The static scheme
is meant to show what the expected performance could
be in a best case scenario. In dynamic registration, a
buffer is registered for each request. his certainly adds
extra cost to the time to service a client, but it is a more
efficient way to manage system resources.

5.2 Single Client Performance

We now turn our attention to the performance of a
single client. We compare performance of a server that
is unloaded, and a server that is under heavy CPU load,
as we described previously. Figure 3a shows the perfor-
mance of the unloaded scenario. We see from this figure
that TCP takes less time to get a single file. The rea-
sons for this are that the iWARP case must handle issues
of memory registration, copying and moving data from
Apache buffers to RDMA buffers. On the client side,
there is extra processing to handle the iWARP protocol
stack in software.

What is somewhat surprising is that the dynamic reg-
istration case is slightly faster than the static registra-
tion case. One other detail about the static and dynamic
schemes should shed light on this. In the static scheme
since we already have the buffer allocated and regis-
tered, we must copy the contents from the open file de-
scriptor that Apache gives to our module. To do this, we
have to memory map the file, then to avoid the memory
registration we have to do a memcpy. With the dynamic
case, we simply memory map the file and register that
buffer. There is no memory copy, but there is a mem-
ory registration. What this data shows is that when the
CPU is under light load it is less costly overall to register
memory than it is to copy it.

Figure 3b shows the same single file retrieval test, but
now with a large artificial load on the server. First, we
note that TCP outperforms both iWARP cases for 2 kB
and 4 kB messages, but as we increase beyond that TCP
performance suffers dramatically. The reason for this is
that TCP requires much more use of the CPU to trans-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

8M1M500 KB4 KB2 KB

T
im

e
 (

s
)

Message Size

iWARP - Static
iWARP - Dynamic

TCP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

8M1M500 KB4 KB2 KB

T
im

e
 (

s
)

Message Size

iWARP - Static
iWARP - Dynamic

TCP

Figure 3. Single file retrieval: a) no CPU load, b) full CPU load.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10 12 14 16

T
im

e
 (

s
)

Number of Clients

TCP
iWARP

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16

T
im

e
 (

s
)

Number of Clients

TCP
iWARP

Figure 4. Multiple clients: a) no CPU load, b) full CPU load.

fer data, whereas iWARP, which does not involve the
host processor, is relatively unaffected. Another strik-
ing issue is that with load, the static case outperforms
the dynamic case, unlike in Figure 3a. Since the CPU is
heavily utilized, the cost for registering memory is more
than the cost to copy memory because registering mem-
ory is a CPU bound task, whereas copying memory is
bound by the memory bus, in terms of performance.

5.3 Multi-client Performance

Next we look at the performance characteristics of
dealing with multiple connections. Again we compare
two cases, one when the server is not loaded, and the
other when the server is heavily loaded. The case when
the server is not loaded is meant to simulate a few clients
accessing files, nothing demanding. In the fully loaded
case, even though we test with 15 actual clients, the load
that we add is meant to simulate a much greater number
of connections and a more demanding request load.

For these experiments we have decided to go with the
case where we have a static buffer, since it was found to
perform a bit better when the server is experiencing a
heavy load. In the tests that follow, each client down-
loads five 1 MB files by using the “recursive” option to
wget, without breaking the initial TCP connection.

In Figure 4a we see the effect of increasing the num-
ber of clients. Clearly TCP outperforms iWARP, but
as the number of clients increaes, and thereby the load,

TCP starts to degrade in performance, as is evidenced
by the relative slope of the line, in that it is noticeably
steeper than that of iWARP. It is very likely that increas-
ing the number of clients beyond 15 would show that
iWARP outperforms TCP with a large number of clients.

To test this hypothesis we look at Figure 4b, where
we show the performance under heavy CPU load. In this
configuration, iWARP outperforms TCP. In fact there
are a few cases where TCP is far more than double the
time for iWARP. The performance of iWARP also varies
little during the test, where as TCP varies greatly at var-
ious points in the graph.

The message is clear, when the server load is in-
creased, TCP performance will degrade due its reliance
on the CPU. iWARP on the other hand, does not require
the CPU to conduct network transfers, and thus shows a
large improvement over TCP.

6 Conclusion and Future Work
In this paper we have demonstrated the feasibility of

adopting emerging high-speed communication protocols
in an evolutionary way on existing TCP/IP and Ether-
net networks. Our Apache module offloads much of the
work of data serving to a hardware iWARP card, re-
ducing host CPU load and thus allowing the server to
accommodate more simultaneous clients, in less time.
This approach is completely backward-compatible with

existing servers and clients. No modification to the
Apache server core code was required; however, clients
must be modified to take advantage of the iWARP proto-
col, though this could easily be in the form of a browser
plug-in.

In the future we plan to address the client compat-
ibility issue by enhancing an existing freely available
software iWARP implementation with a sockets inter-
face that can be linked into unmodified clients such as
Firefox and wget. We also hope to broaden the scope
of our work to encompass PUT-like requests such as are
used with WebDAV and other protocols, and to study
the interaction of proxy or server caching and RDMA.
We also would like to engage some application commu-
nities to deploy the RDMA web server and clients in a
production setting.

In other related work, we plan to investigate and im-
plement the necessary kernel modifications to enable
sending data with RDMA in ways that would remove
the burden of memory registration or copies from the
critical path.

References
[1] Apache Software Foundation. Apache HTTP Server

project. http://httpd.apache.org/, 2005.
[2] R. Armstrong, D. Gannon, A. Geist, et al. Toward a

common component architecture for high-performance
scientific computing. In Proceedings of
High-Performance Distributed Computing, 1999.

[3] P. Balaji, H.-W. Jin, K. Vaidyanathan, and D. K. Panda.
Supporting iWARP compatibility and features for
regular network adapters. In Proceedings of the IEEE
Cluster 2005 Conference, RAIT Workshop, Burlington,
MA, Sept. 2005.

[4] Compaq, Intel, and Microsoft Corporations. Virtual
Interface Architecture specification, Dec. 1997.

[5] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier.
Marker PDU aligned framing for TCP specification.
http://www.ietf.org/internet-drafts/
draft-ietf-rddp-mpa-02.txt.

[6] D. Dalessandro. RDMA over TCP/IP: The next step in
ethernet technology. In Proceedings of the 2005
Commodity Cluster Symposium: On the Use of
Commodity Clusters for Large-Scale Scientific
Applications, Greenbelt, MD, July 2005.

[7] D. Dalessandro and P. Wyckoff. A performance analysis
of the Ammasso RDMA enabled Ethernet adapter and
its iWARP API. In Proceedings of the IEEE Cluster
2005 Conference, RAIT Workshop, Boston, MA, Sept.
2005.

[8] D. Dalessandro and P. Wyckoff. Initial Performance
Evaluation of the NetEffect 10 Gigabit iWARP Adapter.
In Proceedings of the IEEE Cluster 2006 Conference,
RAIT Workshop, Barcelona, Spain, Sept. 2006.

[9] D. Dalessandro, P. Wyckoff, and A. Devulapalli. Design
and implementation of the iWarp protocol in software.
In Proceedings of the 17th IASTED International

Conference on Parallel and Distributed Computing and
Systems, Phoenix, AZ, Nov. 2005.

[10] D. Dalessandro, P. Wyckoff, and A. Devulapalli. iWarp
protocol kernel space software implementation. In
Proceedings of the 20th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’06),
Communication Architectures for Clusters Workshop,
Rhodes, Greece, Apr. 2006.

[11] R. Dooley, K. Milfeld, C. Guiang, S. Pamidighantam,
and G. Allen. From proposal to production: Lessons
learned developing the computational chemistry grid
cyberinfrastructure. In Proceedings of the Workshop on
Grid Applications at GGF 14, Chicago, IL, June 2005.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999.

[13] I. Foster, C. Kesselman, et al. Grid services for
distributed system integration. Computer, 35, 2002.

[14] D. Gannon, G. Fox, M. Pierce, et al. Grid portals: A
scientist’s access point for grid services. Technical
report, Global Grid Forum, Sept. 2003.

[15] J. Hilland, P. Culley, J. Pinkerton, and R. Recio. RDMA
protocol verbs specification.
http://www.rdmaconsortium.org/home/
draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf, Apr.
2003.

[16] iWarp Team. Software implementation and testing of
iWarp protocol. http://www.osc.edu/research/
network file/projects/iwarp/iwarp main.shtml, 2006.

[17] A. Medina, M. Allman, and S. Floyd. Measuring the
evolution of transport protocols in the internet. ACM
SIGCOMM Computer Communication Review,
35(2):37–52, Apr. 2005.

[18] National Cancer Institute. Specimen resource locator.
http://pluto3.nci.nih.gov/tissue/default.htm, 2002.

[19] Netcraft. Web server survey.
http://news.netcraft.com/archives/2007/01/05/
january 2007 web server survey.html, Apr. 2006.

[20] J. Padhye and S. Floyd. On inferring TCP behavior.
ACM SIGCOMM Computer Communication Review,
31(4):287–298, Oct. 2001.

[21] RDMA Consortium. Architectural specifications for
RDMA over TCP/IP. http://www.rdmaconsortium.org/.

[22] R. Recio, P. Culley, D. Garcia, J. Hilland, and
B. Metzler. An RDMA protocol specification.
http://www.ietf.org/internet-drafts/
draft-ietf-rddp-rdmap-04.txt, Apr. 2005.

[23] D. Robinson and K. Coar. The Common Gateway
Interface (CGI) Version 1.1. RFC 3875, Oct. 2004.

[24] B. Rutt, V. S. Kumar, T. C. Pan, T. M. Kurc, U. V.
Catalyurek, and J. H. Saltz. Distributed out-of-core
preprocessing of very large microscopy images for
efficient querying. In IEEE Cluster 2005 Conference,
Burlington, MA, Sept. 2005.

[25] H. Shah, J. Pinkerton, R. Recio, and P. Culley. Direct
data placement over reliable transports. http://www.ietf.
org/internet-drafts/draft-ietf-rddp-ddp-04.txt, Feb.
2005.

