
iSER Storage Target for Object-based Storage Devices
To appear in the Proceedings of MSST’07, SNAPI Workshop, San Diego, CA, September 2007.

Dennis Dalessandro
Ohio Supercomputer Center

dennis@osc.edu

Ananth Devulapalli
Ohio Supercomputer Center

ananth@osc.edu

Pete Wyckoff
Ohio Supercomputer Center

pw@osc.edu

Abstract

In order to increase client capacity and performance,
storage systems have begun to utilize the advantages of-
fered by modern interconnects. Previously storage has
been transported over costly fibre channel networks or
ubiquitous but low performance Ethernet networks. How-
ever, with the adoption of the iSCSI extensions for RDMA
(iSER) it is now possible to use RDMA based interconnects
for storage while leveraging existing iSCSI tools and de-
ployments.

Building on previous work with an object-based storage
device emulator using the iSCSI transport, we extend its
functionality to include iSER. Using an RDMA transport
brings with it many design issues including the need regis-
ter memory to be used by the network, and how to bridge
the quite different RDMA completion semantics with exist-
ing event management based on file descriptors.

Experiments demonstrate reduced latency and greatly
increased throughput compared to iSCSI implementations
both on Gigabit Ethernet and on IP over InfiniBand.

1. Introduction
The performance of modern interconnect networks has

grown by leaps and bounds. One of the biggest impacts
on performance has been the introduction of remote direct
memory access (RDMA). RDMA brings two main bene-
fits. One is to provide protocol offload, the other is a zero-
copy approach to sending and receiving data. However,
the programming interfaces for using RDMA are a signif-
icant departure from existing sockets-based interfaces The
semantics of flow control, event handling, and buffer man-
agement are also quite different.

Storage systems have been slow to adapt to changes in
modern networking technology. Many deployments still
use specialized networks like fibre channel to connect stor-
age systems to compute resources. The iSCSI specifica-
tion [6] makes the important contribution of allowing ex-
isting storage protocols (SCSI) to be transported over gen-
eral purpose IP networks, including Ethernet. Recent drafts
propose iSCSI extensions for RDMA (iSER) [4] which fur-
ther permit the transport of SCSI commands on RDMA-
capable interconnects such as InfiniBand and iWARP. Al-
together, these changes permit the use of commodity high-
performance networks for storage applications while con-

tinuing to use existing SCSI commands and management
tools.

In addition to advancement by utilizing networks, stor-
age devices themselves are undergoing changes. The no-
tion of an object-based storage device (OSD) [7] puts the
onus of data layout management on the device itself, rather
than in the host system. This new semantic provides the
disk the opportunity to be more intelligent in how data
is stored and retrieved, offering improvements in perfor-
mance and manageability. These new devices exploit fea-
tures of the SCSI protocol rarely used by existing block-
based devices, such as bidirectional commands that allow
both reading and writing in the same operation, and large
command descriptor blocks to transport security and other
parameters along with the command. OSDs store attributes
along with the objects, and the attributes can be retrieved
and modified at the same time that object data is accessed.

Previously we have made use of iSCSI in order to im-
plement an OSD emulator [1]. However, limitations of
existing IP networks necessitate switching to RDMA to
achieve the network performance required to drive the de-
vices. This paper describes our design process in imple-
menting iSER and presents performance results over In-
finiBand. To our knowledge, this is the first open source
iSER target, although there do exist proprietary iSER tar-
gets in industry. Our iSER implementation will be made
freely available to the community.

2. Design
In general, a SCSI system includes two components, an

initiator and a target. The initiator submits commands and
awaits responses. The target services commands from ini-
tiators and returns responses. Data may flow from the ini-
tiator, from the client, or both (bidirectional). The iSER
specification [4] requires all data transfers to be started by
the target, regardless of direction. In a read operation, the
target uses RDMA Write to move data to the initiator, while
a write operation uses RDMA Read to fetch data from the
initiator.

Using the Linux kernel, version 2.6.20 as a base, we
modified the existing iSER initiator. Extensions to support
extended CDBs and bidirectional data flow are required by
many of the OSD commands we are interested in using.
However, the bulk of our work is centered around adding
iSER support to an existing user-space iSCSI target [2].

1

In previous work [1] we made target side modifications to
support extended CDBs and bidirectional commands. Next
we discuss some of the design issues in implementation of
iSER target.

Memory registration One of the most severe stumbling
blocks in moving any application to take advantage of
RDMA features is memory registration. Before using
RDMA, both the sending and receiving buffers must be reg-
istered with the operating system. This operation ensures
that the underlying hardware pages will not be modified
during the transfer, and provides the physical addresses of
the buffers to the network card. However, the process itself
is time consuming, and CPU intensive. Previous investi-
gations [8] have shown that for InfiniBand, with a nominal
transfer rate of 900 MB/s, the throughput drops to around
500 MB/s when memory registration and deregistration are
included in the critical path.

Our target implementation uses pre-registered buffers
for RDMA operations. In general such a scheme is dif-
ficult to justify due to the large per-connection resource
requirements. However, in this application it may be ap-
propriate. Since the target always initiates RDMA opera-
tions and never advertises RDMA buffers, it can securely
use one pool of buffers for multiple clients and can man-
age its memory resources explicitly. Also, the architecture
of the code is such that the iSCSI layer dictates incoming
and outgoing buffer locations to the storage device layer, so
supplying a registered buffer is relatively easy.

Event management There is a mismatch between what
the iSCSI target [2] event framework assumes and what
the RDMA notification interface that we use can provide.
The existing TCP-based iSCSI target code has one file de-
scriptor per connection and it is driven by readability or
writeability of the socket. A single poll system call re-
turns which sockets can be serviced, driving the TCP code
to read or write as appropriate. The RDMA interface can
be used in accordance with this design by requesting inter-
rupts from the network card on work request completions.
Notifications appear on the file descriptor that represents a
completion queue to which all RDMA events are delivered.

However, the existing sockets-based code goes beyond
this and changes the bitmask of requested events to con-
trol its code flow. For instance, after it finishes sending a
response, it will modify the bitmask to only look for read-
ability. Even if the socket is writeable, there is no data to
write, hence polling for that status is not useful. The code
also disables new message arrival during command exe-
cution as a sort of exclusion facility, again by modifying
the bitmask. We cannot do this with the RDMA interface.
Hence we must maintain an active list of tasks that have
data to write and drive a progress engine to service them.
This progress routine is woken up by small writes to a pipe

used internally by the single-threaded code to keep track of
its state. It blocks in the poll call only when there is nothing
left to do.

Data completion semantics InfiniBand [3] does not
guarantee that all data will be placed into application mem-
ory in the order it was received by the adapter. While work
requests are processed in order, there are few restrictions on
how the adapter must move incoming data to host memory.
The particular case that arose in this work was in the case
of SCSI read operations. iSER [4] specification requires all
data transfers to be done using RDMA Write and RDMA
Read, followed by a SCSI command response packet sent
using Send. For SCSI read, the target uses RDMA Write
one or more times to move data to the memory of the ini-
tiator, then sends a SCSI response packet using Send indi-
cating the status of the command. The RDMA operations
do not consume receive work requests or cause comple-
tion events on the initiator, and thus are not required to be
ordered with respect to the incoming Send operation. To
avoid the problem of the response message arriving before
the RDMA message is flushed to the user buffer, we force
the target to wait for the local completions of the RDMAs
it started before sending the response. As iSCSI is based
on TCP with its streaming semantics, some aspects such
as this require more care when moved to message-based
weakly-ordered networks.

Padding The iSCSI specification [6] clearly states that all
segments in the protocol data unit (PDU) must be individ-
ually padded to four-byte boundaries. However, the iSER
specification [4] remains mute on the subject of padding.
Without clear guidance from the specifications, and since
padding is really only needed with TCP to find PDU bound-
aries, we chose to use padding only between the segments
in a control PDU, including SCSI command PDUs. Thus,
any additional header segments (AHSs) are padded with
zeroes to the next four bytes so that any following immedi-
ate data section will be word-aligned. Padding the data in
RDMA transfers has no discernible benefit and adds signif-
icant complexity, in particular, the need to register a word
of zeroes and add another entry to the gather list on the
initiator.

3. Experiments
In order to evaluate iSCSI and iSER performance we

test using three network configurations: iSCSI over TCP on
Gigabit Ethernet, iSCSI over TCP layered on IP-over-IB,
and our iSER implementation on InfiniBand. Mellanox 4X
SDR adapters are used for InfiniBand, and Tigon 3 NICs
are used for Ethernet. The machines used are equipped
with Tyan S2891 mainboards and dual 2.4 GHz Opteron
processors with 2 GB memory. Data is read and written to
an ext3 file system on an 80 GB SATA drive. The machines
run Linux, kernel version 2.6.20, with OpenFabrics RDMA

2

drivers and libraries [5].

3.1. Latency

To understand the impact of the network on end-to-end
application performance, we evaluate the performance of
representative OSD commands on the three networks, as
shown in Table 1. The ping command is used to verify
readiness of the target and is implemented as the SCSI test-
unit-ready command. The create and remove commands,
respectively, create and remove an OSD object at the target.
The getattr and setattr commands modify attributes on an
existing object.

Command GigE IPoIB IB
Ping 87 ± 4 36 ± 4 33 ± 4
Create 265 ± 10 220 ± 4 207 ± 3
Remove 257 ± 18 215 ± 11 201 ± 15
Getattr 144 ± 3 86 ± 2 65 ± 1
Setattr 239 ± 54 201 ± 3 175 ± 3

Table 1. Latency for OSD commands in microseconds.

We observe that for all the networks, the ping command
is fastest since it is executed at the SCSI layer at the tar-
get. The rest of the commands require OSD command pro-
cessing which involves database operations. Getattr is the
second fastest for all networks, since it just reads a record
in a table. Setattr is slower since it modifies a table which
requires a write lock increasing its latency. Finally create
and remove are the slowest since they modify two tables.
When we look at the latencies of these operations on dif-
ferent networks, there is progressive improvement in per-
formance as we move from TCP to IPoIB and finally to
InfiniBand. This is expected due to the lower latency of
InfiniBand ≈ 7 µs compared to IPoIB ≈ 16 µs, and TCP
≈ 40 µs. But this advantage of InfiniBand is not reflected
at the application level due to the protocol and command
execution overheads. Except for the getattr command, the
commands do not involve data transfer from the target to
the initiator. Furthermore, the data sent from the initiator
to the target is small and fits in the initial request message,
hence no RDMA Read operations are performed by the
target. However, according to the iSER specification, the
results of the getattr must be transferred using an RDMA
Write. There is no iSCSI phase collapse optimization for
iSER as there is for TCP and IPoIB. But in spite of the ex-
tra round trip, the reduced latency on InfiniBand makes it
the fastest of the three networks.

3.2. Single-client Throughput

Figure 1 shows the delivered bandwidth as a function of
message size, for a single SCSI read operation. The test
was performed many times to calculate the standard devia-
tions shown in the plot. The read throughput for InfiniBand
increases with message size up to about 200 KB, then be-

gins to slowly drop off as message size reaches the maxi-
mum of 512 KB. (This limitation is due to Linux block I/O
buffer management used by the iSCSI initiator.) A similar
trend is visible for IPoIB, but this drop is hardly visible in
the Gigabit Ethernet case as the network is the bottleneck.
The drop in throughput comes from the increasing time in
the OSD emulator to process the data, using read system
calls to copy the data from the kernel page cache.

As stated before, in iSER, reading of data is accom-
plished via RDMA writes from the target. Write opera-
tions are broken into 256 KB chunks (the default DataSeg-
mentLength in Linux iSCSI), and only the last RDMA
write generates a completion event. Once the last RDMA
write completes, the command response is sent to the ini-
tiator.

The write throughput, is shown in Figure 2. Writes are
performed in iSER using RDMA Read operations initiated
by the target, again in 256 KB chunks. Here we see similar
trends between IPoIB and InfiniBand, except that the IPoIB
results are lower than in the read case. As in the iSER case,
the data to be written is solicited by the target using “ready
to transfer” packets that it sends back to the initiator. This
adds another round trip for each data transfer, just like in
the RDMA Read case for iSER.

3.3. Multi-client throughput

In Figure 3 we show the overall read performance as the
number of concurrent clients accessing the single server in-
creases, with write performance in Figure 4. In these two
graphs the message size is fixed at 200 KB. The benchmark
used to collect this data uses MPI to synchronize the clients
at the beginning and end of loops over read or write oper-
ations, and calculates the throughput based on the slowest
completion time.

Looking at Figure 3, we see that only two clients are suf-
ficient to reach near the maximum InfiniBand wire speed.
Effectively the second client allows pipelining of data pro-
cessing in the OSD device with network processing by the
iSCSI and iSER layers. We also observe that as we add
more clients, the throughput does not degrade, as expected
due to the non-blocking single-threaded event-driven de-
sign used in the target code. The IPoIB and GigE cases
show no performance improvement with more clients. The
latter is certainly limited by the network bit rate, while the
former is likely limited by overheads of TCP processing in
software.

The write case in Figure 4 requires more clients to reach
the full bandwidth, but after 11 clients, the throughput is
maxed out and does not degrade just as with the read case.
The reason that read requires more clients to saturate the
network is likely related to the differences in protocol pro-
cessing for iSCSI Write vs iSCSI Read. The extra round
trip messages to request data from the clients limit network

3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Message size (KB)

InfiniBand
IPoIB
GigE

Figure 1. Single client read throughput.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Message size (KB)

InfiniBand
IPoIB
GigE

Figure 2. Single client write throughput.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Number of clients

InfiniBand
IPoIB
GigE

Figure 3. Multi-client read throughput, 200 KB message.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Number of clients

InfiniBand
IPoIB
GigE

Figure 4. Multi-client write throughput, 200 KB message.

utilization. Adjusting iSCSI parameters to use larger im-
mediate data and to use unsolicited data messages would
improve performance at the cost of higher resource uti-
lization per connection on the target. The non-monotonic
jumps in the graph come from the difficulty in achieving
consistent timings across multiple clients—an MPI barrier
releases each initiator at a slightly different time.

4. Conclusion

This paper discusses the design and implementation of
an iSER transport layer for a software SCSI target. It
permits the use of RDMA networks for SCSI commands
and delivers much higher performance than existing non-
RDMA alternatives. While designed for the needs of
object-based storage devices, it is applicable to all SCSI
devices. The code will be merged into the existing open
source stgt project soon.

References

[1] A. Devulapalli, D. Dalessandro, N. Ali, and
P. Wyckoff. Integrating parallel file systems with

object-based storage devices. In Proceedings of
SC’07, to appear, Reno, NV, Nov. 2007.

[2] T. Fujita and M. Christie. tgt: framework for storage
target drivers. In Proceedings of the Ottawa Linux
Symposium, Ottawa, Canada, July 2006.

[3] InfiniBand Trade Association. InfiniBand Architecture
Specification, Oct. 2004.

[4] M. Ko, M. Chadalapaka, et al. iSCSI extensions for
RDMA. IETF Draft Specification, May 2007.

[5] OpenFabrics Alliance. OpenFabrics libraries.
http://www.openfabrics.org/downloads.htm, 2007.

[6] J. Satran, K. Meth, et al. Internet small computer
systems interface (iSCSI). IETF RFC 3720, Apr.
2004.

[7] R. O. Weber. SCSI object-based storage device
commands (OSD-2). Technical report, INCITS
Technical Committee T10/1729-D, Jan. 2007.

[8] P. Wyckoff and J. Wu. Memory registration caching
correctness. In Proceedings of CCGrid’05, Cardiff,
UK, May 2005.

4

