
Non-Contiguous I/O Support for Object-Based Storage
To appear in the Proceedings of ICPP’08, P2S2 Workshop, Portland, OR, September 2008.

Dennis Dalessandro
Ohio Supercomputer Center

1224 Kinnear Rd
Columbus, OH 43212
dennis@osc.edu

Ananth Devulapalli
Ohio Supercomputer Center

1224 Kinnear Rd
Columbus, OH 43212
ananth@osc.edu

Pete Wyckoff
Ohio Supercomputer Center

1224 Kinnear Rd
Columbus, OH 43212

pw@osc.edu

Abstract

The access patterns performed by disk-intensive ap-
plications vary widely, from simple contiguous reads or
writes through an entire file to completely unpredictable
random access. Often, applications will be able to ac-
cess multiple disconnected sections of a file in a single
operation. Application programming interfaces such as
POSIX and MPI encourage the use of non-contiguous
access with calls that process I/O vectors.

Under the level of the programming interface, most
storage protocols do not implement I/O vector opera-
tions (also known as scatter/gather). These protocols,
including NFSv3 and block-based SCSI devices, must in-
stead issue multiple independent operations to complete
the single I/O vector operation specified by the applica-
tion, at a cost of a much slower overall transfer time.

Scatter/gather I/O is critical to the performance of
many parallel applications, hence protocols designed
for this area do tend to support I/O vectors. Parallel Vir-
tual File System (PVFS) in particular does so; however,
a recent specification for object-based storage devices
(OSD) does not.

Using a software implementation of an OSD as stor-
age devices in a Parallel Virtual File System (PVFS)
framework, we show the advantages of providing direct
support for non-contiguous data transfers. We also im-
plement the feature in OSDs in a way that is both effi-
cient for performance and appropriate for inclusion in
future specification documents.

1 Introduction
As high performance computing has transitioned

from large shared memory machines to the distributed
cluster model commonly used today, new challenges
have presented themselves. Internetworking, process
communication, and distributed shared memory are
some of the most explored areas. Another is the issue of
non-contiguous I/O. The need for accessing data that is

not sequential in a file has long been known [10]. There
has also been much work [2, 16] involving parallel file
systems and non-contiguous data access.

However, one area that does not address the need for
efficient non-contiguous I/O is in object based storage,
also known as OSD. Object based storage is the potential
next step in storage device technology. Data is no longer
stored as a stream of bytes. Rather data is represented as
objects. The object view of data is not new [4, 12, 8]
at the file system level; however, an OSD is not a file
system level component. An OSD is the actual storage
medium. Managing data as objects at the device level is
an abstraction that allows for powerful layered seman-
tics.

An object view of data is not the only contribution of
OSDs—one of the major performance benefits of using
OSDs is their capability to handle the decision of how
to lay out data on the disk. Previously this task was the
responsibility of the file system. Offloading this work to
the storage devices means freeing up more resources on
the file system host.

Since OSDs are relatively new, there do not exist any
available disks on the commodity market, although stor-
age vendors are experimenting with the technology. In
order to facilitate research into OSDs we have previ-
ously implemented a software object-based storage de-
vice [6], and integrated it with the popular parallel file
system PVFS [1]. Using our OSD system we are able
to explore further aspects of using OSDs in high perfor-
mance computing (HPC) environments.

In HPC environments, many applications work co-
operatively to solve complex problems. Data generated
as well as used for input is often accessed in parallel,
in non-contiguous chunks. The de facto standard for
parallel application programming in high performance
computing environments is MPI. Applications are able
to take advantage of efficient data access, including non-
contiguous access by making use of the I/O component
to MPI known as MPI-I/O [14]. The underlying file sys-
tem needs to support non-contiguous I/O as well, and



when implemented on PVFS using block based storage,
it does. However this is not true for many file systems
(including NFS), nor is it currently true for object-based
storage devices.

As it stands now, the OSD specification [15] does
not provide for clients to specify a description of a non-
contiguous I/O operation. This means that each read or
write must be broken into many smaller operations when
the storage medium is an OSD. Since these likely in-
volve messages being exchanged over an interconnect,
and each message requires some amount of header data
and processing the performance penalty can be quite
large. This is especially true in high latency environ-
ments like wide-area networks. In order to support real
applications running on parallel file systems, native non-
contiguous I/O access is required.

As part of our ongoing work with object-based stor-
age, we have drafted and submitted a proposal to
SNIA [13], the organizing group for the OSD spec-
ification. Based on their feedback, we expect non-
contiguous I/O support to be included in the next version
of the specification. The rest of this paper shows the per-
formance benefit of adding non-contiguous I/O support
to object-based storage.

2 Background
We now provide technical background information

on a few topics which are central to the themes in this
paper.

2.1 Non-contiguous I/O

Non-contiguous I/O can be defined as any I/O op-
eration which attempts to access data in a way other
than how it is logically stored. Data can be both con-
tiguous or non-contiguous in memory as well as in the
file. In other words how data is laid out in memory and
how it is represented in the file are orthogonal concepts.
Non-contiguous I/O operations are referred to as either
scatter or gather, depending on the direction of the data
flow. Scatter happens when data is written to multiple
locations, while gather retrieves data from multiple lo-
cations. Figures 1 and 2 show examples of how data
blocks can be arranged in memory and in the file. In
Figure 1, data exists in a single region of memory and is
scattered across the file when written. In Figure 2, data
is non-contiguous both in client memory and in the file.
The gather of these figures would simply reverse the way
the arrows point to indicate a read from the file.

Often times parallel jobs whose processes are coop-
erating share the same file, but access interleaved byte
ranges. This is common practice in applications ranging
from simply storing a two-dimensional matrix, to ex-
tremely complex database implementations. The com-
mon theme is the decomposition of data across multiple

Figure 1. Write from contiguous memory
buffer to non-contiguous file.

Figure 2. Write from non-contiguous mem-
ory buffer to non-contiguous file.

processes, resulting in non-contiguous reads and writes
when individual processes go to access their portions of
the overall data. Utilizing non-contiguous I/O can often
yield performance improvements in these cases. MPI
Blast is one such application that is in this category [11].

2.2 PVFS

The Parallel Virtual File System (PVFS) [1], is a pop-
ular parallel file system used on computing clusters to-
day especially for large scale MPI-based jobs. PVFS,
like other parallel file systems, such as Lustre [4], seg-
regate data and metadata operations, in hopes of achiev-
ing higher throughput for data. The basic architecture of
PVFS includes clients, metadata servers, and I/O servers
as shown in Figure 3. While there is only one metadata
server shown in this figure, it is possible, and common-
place, to have multiple metadata servers.

In PVFS it is also possible for the same node to be
used in multiple roles. In general when a client wants
to access data it first queries the metadata servers. The



Figure 3. General architecture of a PVFS
system.

metadata servers convey the necessary information to
find the data on the I/O servers. The client then retrieves
data from the I/O servers, or sends the data in the event
of a write. Typically a file is striped across multiple I/O
servers. This enables multiple network reads/writes to
proceed in parallel.

2.3 Object-based Storage

Object-based storage, as the name implies, treats data
as objects which have meaningful attributes, rather than
as unrelated blocks of data. There are file systems which
have aspects of object-based storage such as Lustre [4],
but these still rely on normal block devices to actually
store the data. Thus OSDs should not be viewed as an
alternative to such file systems, rather OSDs are an al-
ternative to the normal block devices that those object-
based file systems use.

One of the primary differences between traditional
block-based storage and object-based storage is the de-
vice’s role in determining data layout. Block-based de-
vices rely upon the file system input for data placement,
layout and retrieval. Contrary to this, OSDs determine
where to put data and how to lay it out; the file system
need not involve itself with this aspect. OSDs are able
to be more intelligent about data as objects have the im-
portant notion of attributes. The OSD specification [15]
defines a set of mandatory attributes that go along with
each object. These include size, modification time, etc.
The power of attributes is further extended by OSD’s
support for user-defined attributes and powerful seman-
tics to select objects based on attribute values.

Clients interact with OSDs via ordinary SCSI com-
mands. Each command is not only capable of accessing
the object’s data, it can also set and retrieve attributes on
that object as well. Like all SCSI systems, an OSD sys-

tem is made up of a target and an initiator. These terms
are synonymous with the terms server and client (respec-
tively) in networking. Since OSDs are part of the SCSI
framework, it is possible to encapsulate commands and
ship them over any SCSI network, including iSCSI for
use on TCP/IP networks.

2.4 OSD Software Implementation

In previous work [6], we implemented an OSD in
software, including the target and libraries to support
initiators. In our initiator we make use of the in kernel
iSCSI infrastructure. We provide a user space library
that handles OSD requests, and calls into the kernel to
ship the SCSI commands over the network via iSCSI.
As part of the work, we integrated PVFS to use OSD
devices directly, rather than sending all data through
servers. Not only does this give us familiar territory as
far as the file system is concerned, but enables us to use
MPI applications out of the box and run them with our
OSD system. The OSD initiator stack is shown in Fig-
ure 4.

Figure 4. Initiator software stack.

The target, unlike the initiator, can not rely on an in-
kernel iSCSI stack as stock Linux does not include one
and supporting and adapting an out-of-tree SCSI target
is difficult and fruitless. Thus we decided to modify
tgt [7], an open source user-space iSCSI target imple-
mentation. We use tgt to handle the processing of iSCSI
command descriptor blocks and to send responses back
to the initiator. We have an OSD command processing
layer that fulfills the requests. In order to manage and
keep track of attributes on objects, we utilize the light
weight embedded database, SQLite [9]; however, this
does add some overhead. A related work [5] explores
the attribute design and database involvement in more
detail.



Figure 5. Target software stack.

Figure 5 shows the software stack for the target. A
message comes in from the network and gets handled by
the iSCSI (tgt) layer. If it is an OSD command, the re-
quest is handled by the OSD command processor which
will utilize an SQLite database to handle attribute man-
agement. Finally the I/O operations are done against the
disk using the existing file system interface. As this im-
plementation relies on existing media, one cannot expect
to see performance gains over ordinary block devices for
simple transfers. The goal instead is to use the software
implementation as a research vehicle for OSDs and to
guide embedded hardware development in the future.

3 OSD Support for Non-contiguous I/O
The OSD specification [15] does not provide for non-

contiguous I/O operations. In other words there is no
mechanism for an initiator to supply a list of file off-
sets and sizes to access multiple sections of data in a
single operation. However, for many applications non-
contiguous I/O is commonplace. This could be a se-
vere detriment to performance of such applications, es-
pecially if the individual data sections are small, because
each section requires a full network request and response
pair. Even on low latency networks this can prove to be
costly.

3.1 Non-contiguous Support Options

There are a number of options we can choose to sup-
port in terms of non-contiguous data access. The most
simple case, and how things are implemented currently,
is to not support non-contiguous access at all. When a
client asks to do a non-contiguous data access it will be
broken up into multiple contiguous chunks. However, as
outlined above this can have severe performance penal-
ties.

Clearly there is a need for some sort of non-
contiguous support. The most basic type of non-

contiguous support would be to allow initiators to make
data requests by specifying a list of offsets and lengths.
The advantage is in the simplistic implementation, but
the disadvantage is the inefficiency of the request for-
mat and its inability to compactly describe large number
of regular strided accesses or accesses involving closely
segregated regions.

It is also possible to optimize the structure of the re-
quest to support regular access patterns of a given type.
For instance taking advantage of the derived data-type
mechanisms in MPI and PVFS. This is probably the
most optimal, but becomes application specific in that
applications need to be aware of the ways to format the
request and format it appropriately. This also may not
be easily implemented in an embedded device.

3.2 Types of Non-contiguous Access

We identify three important patterns of non-
contiguous access, called data distribution types (DDT).
The first is the scatter/gather list, or SGL, that is famil-
iar from the long standing Unix I/O vector interface. In
SGL we specify each segment to read or write by includ-
ing in a list the offset and the length of the segment from
that offset. There is no need for offsets to appear in any
particular order, and segments may overlap. The offset
and length values are each 8 bytes, matching the values
used elsewhere in OSD to specify offsets and lengths.
There is also an 8-byte count to specify the total number
of segments. Figure 6 shows an SGL header.

Byte Description
0 Count
8 Offset

16 Length
24 Offset
32 Length
. . . . . .

8+16×Count Data

Figure 6. SGL DDT header.

While a scatter/gather list can condense multiple data
segment accesses into a single operation, it can also re-
sult in a lot of overhead, especially if the byte ranges
are extremely small. For instance accessing every other
byte would require a scatter gather list that has 16 bytes
of overhead for every byte accessed plus an additional 8
bytes for the count.

As a slight modification to the above, if the access
pattern is regular, we can use what is called strided I/O.
This is one optimization we can make without imposing
restrictions on the application. In other words an OSD
initiator can make the decision to use strided I/O with-
out being told to do so by the application. It can figure



this out on its own by a simple examination of the user
request. In strided I/O, only the stride and length, each
of which is an 8-byte field, are specified. The stride is
defined to be the distance from the start of one block to
the start of another. The initial offset for the operation
is specified at the start as a part of standard OSD I/O
command. A strided DDT header is shown in Figure 7.
Regular strided access occurs in many applications that
operate on data that consists of a series of fixed-size
chunks. If accesses can be represented using the strided
form, the data description can be very compact. Using
the every-other-byte example above, this would result in
a total of 16 bytes of overhead, regardless of the number
of segments.

Byte Description
0 Stride
8 Length

16 Data

Figure 7. Strided DDT header.

3.3 OSD Implementation

In order to convey this information to the target, the
initiator makes use of the data-out buffer of the Com-
mand Descriptor Block (CDB). The specification [15]
provides an option byte, of which we utilize two bits as
follows:

• 00 = Contiguous

• 01 = Scatter/Gather List

• 10 = Strided

• 11 = Reserved for future use

This means that the DDT shares the same buffer as
the data being sent to the target. We chose to overload
this buffer and specify the DDT at the beginning of the
data-out buffer. There are however other possible imple-
mentations.

For instance, it is possible to tack on an extra data
segment at the end of the data-out buffer. However we
chose not to do this because it would require the target
to buffer the incoming data in order to get to the DDT to
figure out which data to access. If it is a large data access
this could prove troublesome, and may be limited in size
on embedded devices.

Another alternative would be to specify the DDT as
an attribute that gets set on the data operation. The issue
with this approach is the way in which OSDs process
data and attribute requests. First the data is read from
the buffer then attributes are get and set, so again this

approach would require buffering the incoming data un-
til the DDT can be figured out from the attributes.

Finally it is also possible to use a separate set attribute
operation to specify the DDT, before doing the read or
write. Which would be good if the DDT only needs to be
set once and can be reused. If each read or write requires
a different DDT then an extra command is required to set
it which includes an extra network round trip. Moreover
this assumes existence of shared OSD attributes, which
are not yet accepted by the OSD standard.

3.4 CDB Fields

In supporting non-contiguous I/O, we must clarify
the meaning of two important CDB fields: the offset,
and data-out length. For the SGL data distribution, the
CDB data-out length will be the sum of the data being
written and the size of the SGL headers. The strided
DDT will have a CDB data-out length field that is the
sum of the size of the data being accessed and the 16
byte overhead.

SGL Data-out length = 8 + 2×8×NS×DS

Strided Data-out length = 8 + 8 + DS

The above equations show the corresponding rela-
tionships. Here NS stands for number of number of seg-
ments and DS for data size. For a read operation in the
SGL or strided case the data size will be 0.

The other important CDB field to address is the offset
value. The offset in the CDB will be treated as a master
offset and applied to all data accesses. Thus for the SGL
DDT the first byte accessed will be at CDB offset + SGL
offset. Similarly in the strided DDT case, data starts at
CDB offset.

4 Experimental Results
We now turn our attention to experimental results

that show that non-contiguous access is achievable with
OSDs and that there is an increase in performance.
These experiments were conducted using our software
OSD implementation [6]. The experimental platform
consists of a Linux cluster running a 2.6.24 kernel. Each
compute node is outfitted with dual Opteron 250 pro-
cessors and 2 GB of RAM. The disks in use are 80 GB
SATA disks, locally attached.

4.1 Performance Model

In order to reason about expected performance and
to understand the trade-offs between the different DDTs
we offer the following model. Where:

n = number of segments

x = segment size



The overhead due to the particular data distribution
type is:

Oiterative = 0
Osgl = 16×n + 16

Ostrided = x×n + 16

The amount of data to be transmitted includes the
payload and this overhead:

Siterative = x×n

Ssgl = x×n + 16×n + 16
Sstrided = x×n + 16

All formats require at least one round trip, and the
iterative (basic) approach requires a round trip per seg-
ment. We assume an RTT of 30 µs:

Niterative = n×RT T

Nsgl = RT T

Nstrided = RT T

Finally, the total send time can be expressed, using a
network bandwidth (BW) of 800 Mb/s, which is a rea-
sonable throughput on gigabit Ethernet.

T = S/BW + N

Titerative = (x×n)/BW + n×RT T

Tsgl = (x×n + 16×n + 15)/BW + RT T

Tstrided = (x×n+16)/BW +30

This model at face value is for write performance.
However it can be used to model read performance as
well. When reading the same number and size of data
transfers happen, there is simply an extra message sent
for the read request to start things off. This means a con-
stant equal to the RTT/2 would be added to each case.

 0

 20

 40

 60

 80

 100

 120

1 32 1 KB 32 KB 1 MB 32 MB

F
ile

 T
h
ro

u
ig

h
p
u
t 
(M

B
/s

)

Segment Size

Iterative - Basic
SGL

Strided

Figure 8. Write performance model.

Figure 8 shows the result of simulating the model
for writing a 100 MB file with varying segment sizes.

We see that clearly the strided case is best, regardless
of the segment size. However strided is a special case
of SGL and not always possible. As segment size gets
larger throughput gets bigger. The reason is because the
amount of data being sent into the network is sufficient
enough to keep the network full.

4.2 Basic Performance Results

The following experiments were performed using
PVFS configurations consisting of a single I/O server
and a single metadata server. Since this experiment is
data intensive, the single metadata server will not be a
bottleneck. There is nothing to be gained from these
experiments by running with multiple I/O servers. All
trends will remain the same, overall performance will
simply increase with the rate of parallelism.

There are two configurations shown in the following
graphs. Write measures how long it takes to get data to
the file server. This does not take into account waiting
for data to be flushed to disk. The other configuration is
read, where data actually comes from the disk.

Figure 9 shows throughput for a contiguous file of
varying size. Clearly the performance is about the same
for all three DDTs, as is expected. Basically for these
figures there is a single write for the full file, up to
400 kB. Above 400 kB we break single operations into
multiple operations due to kernel iSCSI buffer restric-
tions.

Next we consider non-contiguous file accesses. The
file in question has a view set up by an MPI-I/O vector
type that writes blocks of varying size then leaves a two
byte hole before writing the next block. Figure 10 shows
the write, and read throughput for this non-contiguous
file access. There is some penalty paid for supporting
non-contiguous access on the low end, but as the graphs
indicate our new non-contiguous codebase greatly im-
proves OSD performance. This figure differs from the
previous in that we are now looking at segment size, of
which multiple are sent at once. It is important to note
that we may be sending 1 MB of data, but the actual
size of the file on the other end will be larger, to account
for the two byte holes between each segment. This is
the likely cause of the slight dip in performance seen
for strided I/O, and the reason the others do not reach
slightly higher throughput.

4.3 Parallel Sequence-Search Benchmark

The largest application field for computational clus-
ters, as of the spring 2008 IDC report at the HPC
Forum, is bio-sciences. One of the basic tasks that
computational biologists perform is sequence search-
ing. This amounts to searching a database containing
DNA sequences for certain genes or proteins. What this
means to computer scientists is searching for approxi-



 0

 20

 40

 60

 80

 100

 0.001  0.01  0.1  1

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

File Size (MB/s)

Basic - Iterative
SGL

Strided
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.001  0.01  0.1  1

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

File Size (MB)

Basic - Iterative
SGL

Strided

Figure 9. I/O performance with contiguous file view, left: Write; right: Read.

 0

 20

 40

 60

 80

 100

 0.001  0.01  0.1  1

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Segment Size (MB)

Basic - Iterative
SGL

Strided
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.001  0.01  0.1  1

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Segment Size (MB)

Basic - Iterative
SGL

Strided

Figure 10. I/O performance with non-contiguous file view, left: Write; right: Read.

mate matches of given substrings in a large file full of A,
C, T and G characters. While the computation time cur-
rently overshadows I/O time in most applications, grow-
ing data sets are making higher demands to I/O perfor-
mance. In order to explore the costs of I/O under various
conditions, the S3aSim tool has been developed [3]. We
use this code to show the importance of supporting non-
contiguous file access.

Figure 11 shows S3aSim results for one particular
configuration. Here we used a PVFS file system con-
sisting of four object-based storage devices as data stor-
age elements and four metadata servers. The number
of clients was fixed at 15: one master and 14 worker
processes. The time to complete the search queries on a
database of a given size is shown in Figure 11. The num-
ber of queries as well as the number of results is fixed for
all cases. There is a clear difference between support-
ing non-contiguous access and using the naive or basic
method. The reason that the time decreases as database
size increases is due to the fact that at small database

sizes, there are a large number of queries resulting in a
large number of small results, which effectively result
in large number of small writes. As the database size in-
creases, with the number of queries and results fixed, the
results are simply bigger. This yields the same number
of writes, only larger in size, increasing overall through-
put.

The impact of supporting non-contiguous data trans-
fers can be clearly seen in this application, which was
not modified. It simply sees the advantage of the more
capable data transfer mechanism.

5 Future Work
We are pursuing a number of related aspects in us-

ing OSDs in parallel file systems, such as extensions for
atomic operations and directory support. We will be re-
working our current non-contiguous implementation to
follow the specification as it evolves, possibly using at-
tributes to specify non-contiguous regions of a file to ac-
cess.



 0

 5

 10

 15

 20

 25

 30

 35

 100  200  300  400  500  600  700  800  900

T
im

e
 (

s
)

Size of database (number of sequences)

Non-Contiguous (SGL)
Basic - Iterative

Figure 11. Parallel Sequence-Search
Benchmark Example.

6 Conclusion
As most storage protocols do not implement vectored

I/O, or scatter/gather operations, this is left up to the ap-
plication level to handle. These types of operations are
critical to the performance of many parallel applications.
Some protocols used in high-performance computing do
support I/O vectors, including PVFS, but many do not.
For the evolving object-based storage approach, there
is currently no vectored I/O support. Implementations
must resort to making multiple requests for data access
that are logically only a single operation.

In this paper we have shown the need for object-based
storage devices to support non-contiguous I/O. Using a
software implementation of an OSD in a PVFS file sys-
tem, we show the performance gains by supporting such
operations. Our non-contiguous I/O scheme is both effi-
cient and appropriate for inclusion in future OSD speci-
fications.

References
[1] P. H. Carns et al. PVFS: A parallel file system for Linux

clusters. In Proceedings of the 4th Annual Linux
Showcase and Conference, pages 317–327, 2000.

[2] A. Ching, A. Choudhary, W. Liao, R. Ross, and
W. Gropp. Noncontiguous I/O through PVFS. In
Proceedings of the 2002 IEEE International Confernece
on Cluster Computing, 2002.

[3] A. Ching, W. Feng, H. Lin, X. Ma, and A. Choudhary.
Exploring I/O strategies for parallel sequence-search
tools with S3aSim. In Proceedings of the International
Symposium on High Performance Distributed
Computing (HPDC’06), June 2006.

[4] Cluster File Systems, Inc. Lustre: a scalable
high-performance file system. Technical report, Cluster
File Systems, Nov. 2002.

[5] A. Devulapalli, D. Dalessandro, N. Ali, and P. Wyckoff.
Attribute storage design for object-based storage
devices. In MSST’07, San Diego, CA, Sept. 2007.

[6] A. Devulapalli, D. Dalessandro, P. Wyckoff, N. Ali, and
P. Sadayappan. Integrating parallel file systems with
object-based storage devices. In Proceedings of SC’07,
to appear, Reno, NV, Nov. 2007.

[7] T. Fujita and M. Christie. tgt: framework for storage
target drivers. In Proceedings of the Ottawa Linux
Symposium, Ottawa, Canada, July 2006.

[8] B. Halevy, B. Welch, J. Zelenka, and T. Pisek.
Object-based pNFS Operations. Technical Report
draft-ietf-nfsv4-pnfs-obj-00.txt, IETF, Jan. 2006.

[9] D. R. Hipp et al. SQLite. http://www.sqlite.org/, 2007.
[10] D. Kotz and N. Nieuwejaar. Dynamic file-access

characteristics of a production parallel scientific
workload. In Supercomputing ’94: Proceedings of the
1994 ACM/IEEE conference on Supercomputing, pages
640–649, New York, NY, USA, 1994. ACM.

[11] H. Lin, X. Ma, P. Chandramohan, A. Geist, and
N. Samatova. Efficient data access for parallel BLAST.
In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05), Mar.
2005.

[12] D. Nagle et al. The Panasas ActiveScale storage
cluster—delivering scalable high bandwidth storage. In
Proceedings of SC’04, Pittsburgh, PA, Nov. 2004.

[13] Storage Networking Industry Association. SNIA:
Advancing storage & information technology.
http://www.snia.org.

[14] R. Thakur, W. Gropp, and E. Lusk. On implementing
MPI-IO portably and with high performance. In
IOPADS ’99: Proceedings of the sixth workshop on I/O
in parallel and distributed systems, pages 23–32, New
York, NY, USA, 1999. ACM Press.

[15] R. O. Weber. Information technology—SCSI
object-based storage device commands -2 (OSD-2),
revision 3. Technical report, INCITS Technical
Committee T10/1729-D, Jan. 2008.

[16] J. Wu, P. Wyckoff, and D. Panda. Supporting efficient
noncontiguous access in PVFS over Infiniband. In
Proceedings of the 2003 IEEE International Conference
on Cluster Computing, 2003.


