Memory Management Strategies for Data Serving with RDMA

Dennis Dalessandro
Ohio Supercomputer Center
1 South Limestone St., Suite 310
Springfield, OH 45502
dennis @osc.edu

Abstract

Using remote direct memory access (RDMA) to ship
data is becoming a very popular technique in network
architectures. As these networks are adopted by the
broader computing market, new challenges arise in
transitioning existing code to use RDMA APIs. One par-
ticular class of applications that map poorly to RDMA
are those that act as servers of file data. In order to
access file data and send it over the network, an appli-
cation must copy it to user-space buffers, and the oper-
ating system must register those buffers with the network
adapter. Ordinary sockets-based networks can achieve
higher performance by using the “sendfile” mechanism
to avoid copying file data into user-space buffers.

In this work we revisit time-honored approaches to
sending file data, but adapted to RDMA networks. In
particular, both pipelining and sendfile can be used,
albeit with modifications to handle memory registra-
tion issues. However, memory registration is not well-
integrated in current operating systems, leading to dif-
ficulties in adapting the sendfile mechanism. These two
techniques make it feasible to create RDMA-based ap-
plications that serve file data and still maintain a high
level of performance.

1 Introduction

High-performance computing (HPC) has continu-
ously pushed the bounds of networking, and has ushered
in the adoption of faster and more capable interconnects.
While common in HPC today, 10 Gigabit networks are
only beginning to appear in the mainstream data cen-
ter. This push into non-HPC environments brings with
it new challenges in adapting existing communication
models to use newer and faster networks.

One of the core network technologies used to
achieve high performance is Remote Direct Memory
Access (RDMA). Popular networks such as Infiniband,
iWARP [12], and Quadrics take advantage of RDMA.

Pete Wyckoff
Ohio Supercomputer Center
1224 Kinnear Road
Columbus, OH 43212
pw@osc.edu

Overall, the use of RDMA in applications has to date
been limited to specialized domains. While part of the
reason for this may be due to availability and market-
ing, it may also be that the difficulty in programming
for RDMA devices is slowing the uptake of the technol-
ogy. Years of work have gone into building up a mas-
sive infrastructure around sockets-based networking, all
of which must be re-addressed in the context of RDMA
devices. We address in this work the issue of handling
memory registrations when sending file data.

Currently the most popular use of RDMA-based
adapters is in HPC, where the dominant programming
model is message passing. Application programmers
explicitly send and receive data but do not manage mem-
ory registrations directly. In the library of an MPI im-
plementation, the most effective scheme to improve per-
formance is to cache the registrations of recently used
memory regions. This works, but has numerous out-
standing problems for applications that use some of the
more “interesting” features of virtual memory in an op-
erating system (OS), such as fork and mmap [15]. MPI
does include an I/0O component but does not provide an
API for the server side of an implementation.

Beyond MPI, there are a few specialized applica-
tions that can take advantage of RDMA networks. Dis-
tributed file systems, including NFS-RDMA and PVFS,
use RDMA to great advantage. These efforts and oth-
ers have complex memory management and flow control
schemes that address the registration issue. There is an-
other, more general, class of applications that serve data
in some fashion that could use RDMA networks. These
include servers for FTP, HTTP, CIFS, DAYV, torrent, and
many more popular Internet-scale protocols. However,
it is difficult to manage memory registration in a way
that achieves good performance and scales well with the
number of clients or requests.

2 The File Serving Problem

A key feature of RDMA is “zero copy,” the ability for
the network device to move data to and from user mem-

ory without involvement of the CPU or OS. This saves
CPU cycles to copy the data, and more importantly, re-
duces traffic on the memory bus.

One of the major complicating factors in using
RDMA networks is the need to register memory. Be-
fore buffers can be used, they must be pinned down in
the kernel, and translated to physical addresses to hand
to the network card. Registration cost increases with the
size of the buffer and is significant: for a | MB message,
Infiniband 4X SDR achieves a transfer rate of roughly
900 MB/s, but when registration is included in the tim-
ing loop, this drops to around 600 MB/s [15].

It may seem that since the user does not have to ex-
plicitly register memory with Quadrics, that the problem
would be solved. However, memory registration still
happens implicitly when the adapter needs another re-
gion. If a large number of clients are being handled si-
multaneously, it could result in memory thrashing, and
hence make explicit memory registration more attrac-
tive.

Zero-copy transfers work well when data is gener-
ated by the application and thus already resident in user
buffers. The problem occurs when needing to transfer
data that conceptually lives in the operating system. This
happens, for instance, when sending data from the local
file system, as a web server or FTP server would do.
The act of getting the file into user application memory
introduces possibly multiple copies of data, and while
the network may avoid any further copies in the transfer
between hosts, there is nothing to be done about the data
copy from the operating system.

We consider, in this work, how to ship file contents
across RDMA networks. All mechanisms are compli-
cated by the need to register memory. Pipelining is
one likely approach, but more promising is the “send-
file” mechanism of Linux and BSD operating systems,
which allows sending a file over a TCP/IP socket with-
out copying the file’s contents to user space. The ker-
nel simply reads from the file when generating outgoing
packets. Unfortunately, RDMA connections can not be
represented as file descriptors to streaming sockets, and
thus can not currently take advantage of the sendfile op-
eration.

User Space | 10101010101010101 |

Kernel Space

d ~ Typical Path——>
101
01

101 101 Sendfile Path
Disk 010 1010101
101

NIC

Figure 1. Data paths for file serving.

2.1 Data Path

In applications that involve a client-server communi-
cation paradigm, the overwhelming majority store and
retrieve persistent data in the local file system. This is
obvious in the case of FTP or CIFS whose goal is to ac-
cess files on a remote server, but also true in the case of
serving static content via HTTP, DAV, or torrent. Inter-
actions with the local file system through the operating
system are thus required.

Figure 1 shows the typical path for sending data from
a file across a network. First, the application initiates a
read operation that brings the data from disk into the ker-
nel’s page cache, which is then copied to the destination
user space buffers. Next, the application writes the data
to the network, causing another data copy back to kernel
socket buffers. This latter copy is avoided by using the
OS bypass feature of RDMA networks. Future accesses
to the same file will avoid a disk access and just copy
data from the kernel page cache to user buffers.

Figure 1 also shows the data path that results when
using the sendfile approach. Instead of reading the file
data into a user space buffer then writing it back to ker-
nel socket buffers, the kernel directly builds outgoing
packets using data from its page cache. Avoiding two
memory copies is a great improvement and has led to
the widespread adoption of sendfile in popular applica-
tions such as Apache and Samba.

The sendfile approach is nicely flow controlled by
coupling file access to the network protocol: returning
TCP acknowledgments drive reading more of the file
into cache and possibly freeing already-sent parts of the
file.

2.2 RDMA Complications

The benefit of moving data directly to the network,
without intervening kernel buffers, comes with the cost
of memory registration. In order to avoid these costs,
application writers commonly use two strategies. The
first is static registration: allocate a fixed buffer at ini-
tialization time and send and receive all data using that
buffer. This, of course, introduces a data copy back into
the critical path, and it has severe scalability problems in
a server setting, as each connection or client will require
its own private buffer.

A more realistic strategy is to perform memory reg-
istration inside the critical path, but to cache those
registrations in the hope that they can be used again
later. Caching is necessary to achieve reasonable per-
formance, but implementing caching requires strategies
on what to cache, what to release when the cache is full,
and, in a library setting, how to notice when the appli-
cation unmaps the cached region [15]. This usually re-
sults in some sort of least-recently-used eviction algo-
rithm with various tunables and hooks to disable certain

system calls.

Ironically, with the current state of affairs, serving file
contents with RDMA will always require one memory
copy: read the data into a buffer, register the buffer, then
perform a zero-copy send to the network. Note that an
application could go one step further and cache not only
the registrations, but also the contents of the file being
served. But since the operating system already imple-
ments a sophisticated file buffer cache that tracks usage
and reads ahead based on access patterns, duplicating
this in an application would be a bad design choice.

3 Design

We discuss three designs, increasing in their sophis-
tication, to send file data using an RDMA network.

3.1 Naive approach

As discussed above, an application can read file data
directly into a statically allocated buffer, at the expense
of scalability, or it can read into any buffer and register
just before sending it, with the considerable overhead of
registration.

One can also use mmap on the file to have it appear di-
rectly in the virtual memory space of the process. This
appears to avoid the copy, but, as the newly-mapped
buffer is registered, the file contents will be faulted in
so that the NIC can access the data. The semantics of
memory registration in the current OpenFabrics imple-
mentation of RDMA requires that the file be opened
with write permissions so that it can be registered as
a shared, writable mapping. Otherwise, a full copy of
the file cache pages will be performed into new mem-
ory to be mapped into the application. This interferes
with most file serving implementations, where the dae-
mon that serves the content runs as an unprivileged user
(e.g. Apache) that only has permission to read files. Our
experiments in Section 5 do not impose this additional
copy burden when testing the mmap approach.

Since the bulk of the time in memory registration is
due to following page table entries and converting vir-
tual addresses to physical ones, the mmap approach is still
quite expensive, even though it avoids a copy.

3.2 Pipelining

Another approach to gain an improvement in perfor-
mance is to bring the file into user memory and to reg-
ister that memory in a pipelined manner. This makes it
possible to overlap sending of the data and copying of
file contents to user space, at the same time keeping the
network pipe full. Pipelining can also hide the cost of
memory registration.

The number of pipelines, that is the number of simul-
taneous events occurring is a key factor in the perfor-
mance. The other facet of performance is related to the

depth of each pipe, meaning how much data is sent or
copied at each stage in the pipeline. Tuning the depth is
analogous to tuning of the send buffer in TCP.

While pipelining will improve performance for a sin-
gle transfer, it does not remove the system effects of
copying and registration, just overlaps them with net-
work activity. The burden of copying on the memory
bus, and registration on CPU cycles, will limit overall
system throughput, especially in file servers that handle
multiple clients simultaneously.

3.3 RDMA Sendfile

Taking things a step farther, it would be beneficial
to remove the burden of copying and/or registration en-
tirely. Borrowing the theme from TCP sendfile, where
file data is moved directly from page cache to socket
buffer, we designed a sendfile-like scheme that works
with RDMA networks.

Combining the above notion of an RDMA sendfile
operation with the pipelining scheme discussed above,
we remove as much of the overhead as possible, and end
up with a very efficient mechanism for transferring file
data across RDMA networks.

In our design, we use the kernel to manage the file
cache and register memory regions on behalf of the user
process. It returns local access keys to the memory re-
gion that the user process submits in work requests to the
NIC. It also unregisters the memory regions as requested
by the user application. Because the kernel has the phys-
ical addresses of the pages that hold file contents, no
page-table walking or translation is necessary. And be-
cause the user application need not see the file contents
to ship it across the network, no copying or mapping into
the user address space is ever performed.

As the file size can exceed physical memory or lim-
its on pinned memory regions, we use an iterative,
pipelined design to send the file in multiple chunks. The
user application opens the file (but does not read it), ini-
tializes data structures, and loops over the file size. At
each trip through the loop it invokes the kernel to reg-
ister a section of the file and deregister previously com-
pleted sections, submits work requests to the NIC, polls
for completed work requests. The user-space thread
blocks while waiting for completion notifications, thus
the whole process is naturally clocked by the network
and consumes little CPU overhead.

One possible alternative design would be to have the
kernel initialize the RDMA connections and manage the
entire process itself. Then there would be no restriction
on submitting work requests to a protection domain for
a user-space application. However, this would involve
moving a large amount of functionality into the kernel
that does not belong there, including the entire state ma-
chine for connection management and error handling for

failed connections. We did not pursue this approach due
to the complexity and need for so much code duplica-
tion.

4 Implementation

For this work, we have implemented all three sce-
narios described in the preceding section. All ap-
proaches are implemented in a shared library that ex-
ports a sendfile-like interface to the user, allowing us
to use identical test codes and to facilitate application
deployment. Our RDMA sendfile software further uses
a kernel module to handle memory registration of file
cache data. The shared library handles all pipeline or-
ganization, as well as posting send requests and retiring
completion queue events.

The software stack we use to communicate with the
network infrastructure is OpenFabrics [10]. This allows
our software to work unmodified either on iWARP or
InfiniBand hardware. Minor changes are needed to the
OpenFabrics stack for our current kernel module imple-
mentation: two symbols used to locate the kernel rep-
resentation of a user protection domain are exported to
our module. This small change will go away once our
sendfile extension is integrated into OpenFabrics.

The user application specifies the limit on the number
of pages to register at once which gives us a maximum
message size based on the hardware page size. The user
also specifies the number of outstanding operations, se-
lected based on maximum completion queue depth and
resource limits.

4.1 Security Concerns

As with TCP sendfile, the kernel has direct access
to the physical pages that hold the file contents. Un-
like in the TCP case, however, the kernel can not submit
work requests to an existing connection. RDMA pro-
tocols, including InfiniBand and iWARP, were designed
so that the OS would be bypassed in the send and re-
ceive path. To be more precise, InfiniBand verbs are
defined very strictly to guarantee that memory of any
particular process can not be accessed by another pro-
cess. Queue pairs are created in a protection domain,
and all memory accesses are constrained by that protec-
tion domain. The kernel also can not submit arbitrary
work requests to queue pairs constructed by a user pro-
cess. Given the well defined security model of RDMA
interconnects, layering security protocols such as SSL
on top of RDMA is feasible.

5 Results

For the experiments that follow, we used InfiniBand
as the RDMA network. Each node is equipped with dual
Opteron 250 processors, and 2 GB of RAM. The operat-
ing system is Linux, version 2.6.20. The Infiniband de-

vices are 4X Mellanox single data rate, mem-free cards.

For software, we have coded a test driver that uses
either our in-kernel RDMA sendfile implementation, or
our pipelined user-space RDMA sendfile implementa-
tion. Both sendfile libraries implement the same pipeline
scheme, and endure the same amount of memory regis-
trations, polls to completion queue, and so forth. The
main difference is that the user space library registers
memory directly, while the kernel library uses the in-
kernel version of the OpenFabrics memory registration
verb to register physical pages with the NIC. The kernel
module also must manage a list of pages for each pipe,
freeing as necessary.

1000

No Registration
Dynamic Registration —
Static Registration

800

600 |

400 |

Throughput (MB/s)

200 |

4kB 32kB 256 kB 2MB 16 MB 128 MB
File size

Figure 2. Naive approach.

We use InfiniBand in the following experiments
mainly due to stability and hardware availability. A pos-
sibly better target would be a more wide area friendly
interconnect such as iWARP. Despite the lack of iWARP
hardware availability, we can implement on InfiniBand
and the lessons learned will apply equally. A platform
such as iWARP has the advantage that only servers need
to be equipped with hardware, clients can make use of
software [5, 6] to emulate the required network proto-
cols. Our prior work with Apache is one such exam-
ple [4], we outfit an Apache server with a hardware
iWARP card and have multiple clients which emulate
iWARP in software in order to realize RDMA benefits
at the server.

Despite the obvious draw backs, InfiniBand is finding
use in the wide area through the use of so called long-
haul technology, and has even been demonstrated to be
routable [9]. Given these relatively new advances it is
not out of the question that we will see wide area usage
of InfiniBand in the near future.

While our experiments tend to focus on performance
rather than scalability, for our target applications such
as web servers, an increase in performance will mean an
increase in scalability. Higher throughput translates into

handling clients faster, which means more clients can be
handled in the same amount of time.

5.1 The Naive Approach

In Figure 2, we show the two ways to send file con-
tents, static and dynamic registration, along with a curve
to show the maximum throughput when performing no
memory copies or registration. In static registration, the
file is read into a pre-registered buffer. With dynamic
registration, the file is mapped into memory, and the re-
sulting buffer registered.

The top curve is the one generally shown in bench-
marks. It does not include time to register or copy mem-
ory. For this particular curve, we have carried out these
activities outside of the timing loop. With static regis-
tration, performance is good up through about a 64 kB
message size, at which point the memory bus becomes
the bottleneck. While the initial overhead of perform-
ing dynamic registration keeps its performance low at
small message sizes, it is not bound by the memory bus
and steadily increases with message size. However, the
effects of registration are clearly visible even at large
file sizes. This is due to the CPU-intensive nature of
memory registration: each hardware page (4 kB usually)
must be individually identified and manipulated. As the
working set size of the relevant page tables exceeds the
L2 cache size of the machine, latency for memory oper-
ations also becomes a significant bottleneck.

1000

1 pipe, 256 pages
1 pipe, 128 pages
1 pipe, 64 pages —
800 1 pipe, 32 pages
1 pipe, 16 pages —
1 pipe, 8 pages —
1 p!pe, 4pages — q
600 1 pipe, 2 pages —

//\/\/-\,/f\,
400 | ¥

200 |

Throughput (MB/s)

4kB 32kB 256 kB 2MB 16 MB 128 MB
File size

Figure 3. Page size effect on pipeline.
5.2 User-space Pipelining

Due to the shortcomings of the approaches discussed
in the previous section, we now turn our attention to the
benefits of pipelining the memory registrations. Figure 3
first shows the case where pipelining is disabled, just to
illustrate that large message sizes are indeed advanta-
geous, as they amortize both the sending overhead and
registration overhead. This is the pure user space im-
plementation, against which we will compare our kernel
implementation in the next section. The upper limit of

performance is the same as that in Figure 2 for dynamic
registration.

Figure 4 shows the more interesting effect of increas-
ing the number of concurrent operations. As few as
two is sufficient to increase the throughput significantly.
Higher values may be better, but at the cost of overheads
in bookkeeping and registered memory footprint.

1000 T T
10 pipes, 256 pages
6 pipes, 256 pages —
2 pipes, 256 pages —
800 [1 pipe, 256 pages
a
)
S 600
5
[=8
=
[=]
=
S 400
=
=
200

4kB 32kB 256 kB 2MB 16 MB 128 MB
File size

Figure 4. Pipelining depth.
5.3 RDMA Sendfile

In this section we show results from our new design
that uses the kernel to identify and register file pages,
while userspace continues to send messages and reap
completions.

Just like with the user-space approach, we use
pipelining here. The results shown in Figure 5 show the
same sort of pattern as in Figure 3, in that larger mes-
sages achieve better throughput. Although in this case,
the message size required to achieve a certain level of
performance is smaller.

1000 T T
1 pipe, 256 pages —
1 pipe, 128 pages
1 pipe, 64 pages —
800 | 1 pipe, 32 pages
1 pipe, 16 pages | Iy
—_ 1pipe,8 pages —
n\? 1pipe, 4 pages —
= 600 | 1 pipe, 2 pages
=
=%
=
[
3 v
o 400
&=
=
200
0 :
4kB 32 kB 256 kB 2MB 16 MB 128 MB

File size
Figure 5. Page size effect on RDMA Send-
file.

Figure 6 shows the effect of increasing the number
of concurrent operations, or “pipes”. Here, the marginal
improvement by going from one to two pipes is very

much smaller than in the user-space case, due to the
lower overhead of the in-kernel RDMA sendfile ap-
proach.

1000 T T
10 pipes, 256 pages
6 pipes, 256 pages
2 pipes, 256 pages
800 [1 pipe, 256 pages

600 |

400 |

Throughput (MB/s)

200 |

4kB 32kB 256 kB 2MB 16 MB 128 MB
File size

Figure 6. RDMA Sendfile pipeline depth.

5.4 Per-connection Memory Requirements

One of the ways to improve scalability for network
applications is by limiting the amount of memory each
connection is allowed to use. For instance with TCP,
socket buffers often range from 32 KB to 64 KB per con-
nection. In figures 7 and 8 we show the performance for
sending a 16 MB file for pipeline depths of 1, 2, and 4.
We do this for 4, 8, and 16 pages each. The total buffer
size is calculated by multiplying 4 KB by the number
of pages, and multiplying that by the number of pipes.
For convenience the total buffer size in KB is calculated
and shown above each bar. We see that even for small
TCP like buffer size of 32 KB and 64 KB it is possible to
achieve throughput in the range of 200 MB/s to just over
400 MB/s. By increasing the total allowed buffer size
to 128 KB per connection, and utilizing 2 pipelines it is
possible to achieve nearly 700 MB/s. If we continue to
increase total buffer size to 256 KB per connection it is
possible to achieve full throughput with the sendfile ver-
sion and slightly more than 700 MB/s with the pipeline
version. It is interesting to note that at small buffer sizes
the importance of RDMA sendfile becomes quite appar-
ent. This is especially true for 4 pipelines and 256 KB
of buffer space.

5.5 Overheads

Our kernel-based sendfile design incurs some over-
heads, but achieves better performance due to avoiding
virtual address translation. In the case where the appli-
cation cannot open files for writing, it also saves a full
memory copy of the data, but that effect is not shown
anywhere in this paper.

The overheads in RDMA sendfile involve making
multiple system calls to invoke the kernel, but these

900
4 Pages ——
8 Pages 23

16 Pages

800 |

700

600

500

400

Throughput (MB/s)

300

200

100

0

1 2 4

Figure 7. Pipeline performance at varying
depths.

are very inexpensive. We use existing infrastructure for
sendfile to look up the pages of the file, and this is done
one page at a time, with a callback into our code. That
overhead is also comparatively small, as measured by
disabling various aspects of the code and comparing to
the full version.

Figure 9 displays the major difference between user-
invoked and in-kernel memory registration that we ex-
ploit in RDMA sendfile. The top curve shows the time
to register a single memory region of a given size, and
is similar to that found in previous analyses [7, 15]. The
bottom curve shows the time for the kernel to register file
cache pages. Memory registration consist of three oper-
ations: pinning down memory pages, translating virtual
addresses to physical addresses, and transmitting the list
of physical addresses to the adapter. At small message
sizes, the time to communicate with the network adapter
dominates [8]; however, for larger sizes the time to do
the virtual address translation dominates. Both opera-
tions include the time to pin the pages in memory. The
costs to deregister memory are identical in both cases.
In the graph we see what looks like two outliers per
curve, the first two data-points are either a hardware or
firmware issue.

Memory registration, be it virtual or physical does
not impact how long it takes the NIC to send a message.
Keeping this fact in mind. The overhead from the reg-
istration, and the difference between the two overheads
makes it easy to visualize the effect of memory registra-
tion on message latency.

Our implementation takes advantage of this differ-

900

4Pages ——
8 Pages &R
16 Pages

700

600 [

500 |~

400

Throughput (MB/s)

300

200

100

0
1 2 4

Figure 8. RDMA Sendfile pipeline perfor-

110

Virtual memory registration
Physical memory registration ——
100 |

90 [
80

70 [

Time to reg (us)

60

50

40

30 ' ' ' '
4kB 200 kB 400 kB 600 kB 800 kB 1MB

Buffer size

Figure 9. Cost of memory registration.

ence by avoiding the unnecessary mapping of file cache
data into user virtual memory, then translating it right
back into physical addresses.

5.6 Putting it all together

Now that we have explored the performance charac-
teristics of each mechanism, we aggregate in Figure 10 a
summary of each of the three mechanisms. All of these
curves include the cost of memory registration in the
transfer time, as is appropriate for file serving applica-
tions.

Both the in-kernel sendfile and user-space pipelined
versions use 6 pipes and 256 pages per pipe (1 MB).
The non-pipelined user-space code tops out at 700 MB/s,
which although better than doing memory copies into a
statically allocated buffer, is lower than what the hard-
ware can provide and quite CPU intensive.

Interesting to note is that the performance of the

pipelined and non-pipelined user-space code is the same
up until around 1 MB, the size of a single message in the
pipeline. Thus beyond 1 MB, the advantages of overlap-
ping registration with sending is apparent.

The higher curve shows the in-kernel RDMA send-
file approach, which also is similar to the non-pipelined
versions for small messages. Starting from 256 kB, the
effect of avoiding virtual to physical translations can be
seen, as discussed above.

These results hint that at even higher network speeds
such as can be obtained with double- or quad-data-rate
InfiniBand, or when using multiple iWARP NICs, the
kernel-based RDMA sendfile approach will show even
more advantage. Due to the reduction in CPU utilization
and memory overheads, file servers will find it important
to rely on the RDMA version of sendfile as much as they
do on the TCP version today.

1000 T T
Sendfile Pipeline
User Space Pipeline ——
Non-Pipeline
800 |
Q
[~
S 600 [
5
(=%
=
=)
=)
o 400 [
=
=
200

4kB 32kB 256 kB 2MB 16 MB 128 MB
File size

Figure 10. Comparing all file serving
schemes.

6 Related Work

The costs associated with memory registration is ex-
amined in a number of works, including [15, 7, 3, 14].
The paper by Tipparaju et al. [14], explores three
schemes for dealing with memory registration, two are
similar to what we describe as dynamic, and static
buffering, the third is an approach that gives users an
interface to allocate already registered memory. An-
other approach to ease the burden of memory registra-
tion referred to as hugepages is described in [13]. Such
a mechanism would only provide a marginal amount of
improvement, as it does not address the issue of copying
file data. Though the act of memory registration would
be less costly, as there is less to register.

The importance of overlapping communication and
computation is a thoroughly explored topic. One exam-
ple which looks at issues related to pipelining is [2]. In
this work it was shown that pipelining for large mes-

sages had little effect on performance, in contrast to this,
we found pipelining was necessary for large messages.
This is most likely due to the overheads of dealing with
file data in our case.

Our approach to sending a file directly without copy-
ing the contents to user space is not a new idea. This was
first proposed by Park et al [11]. They describe an exten-
sion to VIA [1] that lets a user specify a file to send, and
the kernel provides the physical addresses to the NIC to
do so, but they do not address how the kernel manages
the cached pages or the use of pipelining. This was also
done as an FPGA implementation on gigabit Ethernet.

References

[1] P. Buonadonna, A. Geweke, and D. Culler. An
implementation and analysis of the Virtual Interface
Architecture. In Proceedings of SC 98, Nov. 1998.

[2] A. Cohen. A performance analysis of 4X InfiniBand
data transfer options. In Proceedings of IPDPS 03,
2003.

[3] D. Dalessandro and P. Wyckoff. A performance analysis
of the ammasso RDMA enabled ethernet adapter and its
iWARP APL. In Proceedings of Cluster 05, RAIT
Workshop, Boston, MA, Sept. 2005.

[4] D. Dalessandro and P. Wyckoff. Accelerating web
protocols using RDMA. In Proceedings of SC 06,
Poster, Tampa, FL, Nov. 2006.

[5] D. Dalessandro, P. Wyckoff, and A. Devulapalli. Design
and implementation of the iWarp protocol in software.
In Proceedings of PDCS 05, Phoenix, AZ, 2005.

[6] D. Dalessandro, P. Wyckoff, and A. Devulapalli. iWarp
protocol kernel space software implementation. In
Proceedings of IPDPS 06, Communication Architectures
for ClustersWorkshop, Rhodes, Greece, 2006.

[7]1 D. Dalessandro, P. Wyckoff, and G. Montry. Initial
performance evaluation of the NetEffect 10 gigabit
iWARP adapter. In Proceedings of Cluster 06, RAIT
Workshop, Barcelona, Spain, 2006.

[8] E. Mietke, R. Rex, R. Baumgartl, et al. Analysis of the
memory registration process in the mellanox infiniband
software stack. In Proceedings of EuroPar 06, 2006.

[9] Obsidian Research Corporation.
http://www.obsidianresearch.com.

[10] OpenFabrics Alliance. http://www.openfabrics.org.

[11] S.Park, S. Chung, B. Choi, and S. Kim. Design and
implementation of an improved zero-copy file transfer
mechanism. In Proceedings of PDCAT 04, Dec. 2004.

[12] RDMA Consortium. Architectural specifications for
RDMA over TCP/IP. http://www.rdmaconsortium.org/.

[13] R.Rex, F. Mietke, W. Rehm, et al. Improving
communication performance on InfiniBand by using
efficient data placement strategies. In Proceedings of
Cluster 06, Barcelona, Spain, 2006.

[14] V. Tipparaju, G. Santhanaraman, et al. Host-assisted
Zero-copy remote memory access communication on
InfiniBand. In Proceedings of IPDPS 04, 2004.

[15] P. Wyckoff and J. Wu. Memory registration caching
correctness. In Proceedings of CCGrid 05, May 2005.

