
Attribute Storage Design for Object-based Storage Devices

Ananth Devulapalli Dennis Dalessandro Pete Wyckoff
Ohio Supercomputer Center

{ananth, dennis, pw}@osc.edu

Nawab Ali
Ohio State University

alin@cse.ohio-state.edu

Abstract

As storage systems grow larger and more complex, the
traditional block-based design of current disks can no
longer satisfy workloads that are increasingly metadata in-
tensive. A new approach is offered by object-based storage
devices (OSDs). By moving more of the responsibility of
storage management onto each OSD, improvements in per-
formance, scalability and manageability are possible.

Since this technology is new, no physical object-based
storage device is currently available. In this work we de-
scribe a software emulator for an object-based disk. We
focus on the design of the attribute storage, which is used
to hold metadata associated with particular data objects.
Alternative designs are discussed, and performance results
for an SQL implementation are presented.

1. Introduction
With storage systems becoming increasingly more com-

plicated, and storing an ever growing amount of data, the
traditional block-based concept of storage has become in-
adequate. In a time when individual hardware components
are becoming more aware of their role in the system, it
makes sense to consider similar improvements to storage.
The ANSI standard for an object-based interface to storage
devices [10] aims to do just this. An object-based storage
device (OSD) offers the file system an object-based view of
the data. OSDs manage the data layout and keep track of
various attributes about data objects on the disk. Unlike a
block-based disk, an OSD is aware of the logical organiza-
tion of data as defined by its users. By moving functionality
that is traditionally the responsibility of the host OS to the
disk, it is possible to improve the overall performance and
simplify the management of a storage system.

Since the OSD standard [10] is still relatively new, there
are no readily available production hardware disks. To en-
able research into issues related to using object storage in
high-performance file systems, we have created a software
OSD emulator. In this work we present our standards-
compliant emulator and aim to identify the trade-offs as-

sociated with using SQL queries for metadata operations,
in particular, for the fast indexing operations supported by
OSDs.

An OSD object is defined as an ordered set of bytes that
is associated with a unique identifier. Four types of objects
are defined in the OSD specification [10]: root, partitions,
collections, and user objects. There is always exactly one
root object on an OSD, but it can contain multiple parti-
tions. A partition is a way of defining a namespace for
collections and user objects. User objects are the entities
that actually contain data, while collections are groupings
of user objects, used for fast indexing based on attributes.

One of the powerful features of OSD is that each ob-
ject has a number of attributes associated with it. These
attributes can be thought of as the metadata of the object.
The attributes for each object are organized in pages for
identification and reference, and attributes within a page
have similar sources or uses. Within each attributes page,
attributes are identified by an attribute number. Since at-
tributes are an essential differential feature of an OSD, it
is important to understand design trade-offs involved with
attribute storage.

2. Design
Our OSD target emulator is a SCSI device and uses

iSCSI protocol for communication. Basic SCSI command
processing is performed by a generic SCSI layer, and OSD-
specific commands are handled by our emulator. We utilize
the existing software tgt [3] to handle transport and iSCSI
command handling.

OSD commands can be classified into the following cat-
egories: object manipulation, input/output, attribute manip-
ulation, security, and device management. Our OSD tar-
get currently implements all mandatory object manipula-
tion, input/output, and attribute manipulation commands. It
also supports collection functions such as QUERY and SET
MEMBER ATTRIBUTES. Work on the other commands
including security and device management is in progress.

In designing a storage emulator, there are a number of
issues concerning how to store data. Essentially, an OSD
implements a simplified file system. An OSD must man-

age data placement and on-disk structures to describe ob-
ject data (called “inodes” in BSD parlance). Our emulator
stores object data in files. The files are provided by an un-
derlying file system, using the VFS interface in Linux. We
use pread and pwrite to move data to and from the disk,
relying on the kernel-resident file system and disk sched-
uler to store the bytes. The rest of this paper concerns itself
with the storage of metadata.

2.1. Attribute storage

Attributes hold “metadata” that is associated with the
object. In the traditional POSIX sense, metadata includes
information such as ownership, creation, access, and mod-
ification times, size, and so on. An OSD must store ex-
tensible metadata, but also has further requirements. It al-
lows complex database like queries to select a list of object
matching certain attribute criteria. Further, it can organize
objects into logical groups and execute complex operations
on all objects within the group using a single command.
To implement these operations effectively, there is a need
for comprehensive attribute storage model. The following
sections describe multiple approaches to this problem.

File-based implementation: A simplified approach to
implementing attributes would involve encoding the at-
tribute page and number into the file name, with the at-
tribute value residing in the file. This is the approach used
by previous OSD emulators [6, 2]. This approach is in-
efficient when handling complex queries. For example, a
query operation requires that each attribute file be opened,
read, and closed to see if the values match the given selec-
tion criteria. The overhead of performing this work through
the operating system interface is enormous. This approach
is slow, inflexible for complex operations, and would limit
scaling in the number of stored objects and attributes.

Simple database: The file-based approach lacks an in-
dexing mechanism which can make look-ups and inserts
very fast. A simpler database like gdbm [8] or db4 [9]
can solve this problem. Such databases use extensible
hashing or B-trees to store the data into two-column ta-
bles: one for the key which is used for indexing and an-
other for the value. Such a database is sufficient for im-
plementing the basic commands of the OSD specifica-
tion [10]. But implementing multi-object commands like
QUERY and SET MEMBER ATTRIBUTES, or complex
commands like LIST with attributes and getting directory
pages, increases the complexity of the implementation due
to the restriction of a two-column format.

SQL database: The drawbacks of the previous ap-
proaches motivated us to look at SQL databases for at-
tribute organization and manipulation. For our implemen-
tation we were interested in rich SQL semantics of the
database but without the overheads of inter-process com-

munication or connection setup of traditional client-server
SQL databases. Nor would we need a persistent database
that lives outside of the context of the OSD emulator. An
alternative embedded database, SQLite [4], simplifies these
management issues. It is an open-source database and im-
plements most of the SQL92 standard [7]. Moreover the
code footprint is about 160 kB, making it viable to be im-
plemented on an embedded processor of an actual disk.
SQLite supports all the necessary features for expressing
attribute manipulation commands in clean and concise SQL
statements.

Customized data structure: The optimal solution to at-
tribute handling is a customized data structure designed
purely to support OSD attribute structure. Such a data
structure would likely outperform a generic SQL-based at-
tribute manipulation, but it is not clear if the payoff from
such a scheme will be commensurate with the effort. Fur-
ther, designing such a data structure requires an intimate
understanding of the relationships between the different
components of the OSD attributes.

Considering the above choices, we traded off some per-
formance for ease of use and selected the SQLite-based
design for attribute management. Next we describe the
schema used for storing attributes.

2.1.1. Attribute schema

The database schema is made up of three tables: OB-
JECT, ATTRIBUTE and COLLECTION. The OBJECT ta-
ble store the information about defined objects. The AT-
TRIBUTE table stores all the defined attributes for all ob-
jects within OSD. Finally the COLLECTION table stores
the many-to-many relationships between user objects and
collections.

The OBJECT table is made up of following entities:
Partition ID, Object ID and Object Type. The tuple (Par-
tition ID, Object ID) serves as its primary key since it
uniquely identifies an object. The ATTRIBUTE table is
made up of (Partition ID, Object ID, Attribute Page, At-
tribute Number) as the primary key and Attribute Value as
the secondary key. The four-entity tuple uniquely identifies
an attribute. Since the COLLECTION table acts as an inter-
section table between objects and collection, the tuple (Par-
tition ID, Object ID, Collection ID) serves as its primary
key with the secondary key made up of Attribute Number.
A related technical report [1] describes this schema in more
detail.

3. Metadata experiments
This section introduces the basic performance of the em-

ulator, then describes four interesting metadata operations
that OSDs can perform, along with performance results
from our SQL-based emulator. The need to perform these
types of queries, and to perform them efficiently, is what

motivates the need for a database-like design.
The OSD target described in the paper implements

the iSCSI protocol and is capable of communicating with
iSCSI initiators. Since the communication overhead might
mask interesting interactions within the target, we evaluate
the target on its own by injecting OSD commands directly
at the target’s OSD command processing layer.

Our experimental platform is a Linux cluster where each
node has two AMD Opteron 250 processors, 2 GB of RAM
and an 80 GB SATA disk. The cluster runs the Linux op-
erating system, version 2.6.20. The x-axis of most plots
will be the number of objects, either in the device or in
the collection, to show how attribute storage scales with in-
creasing database size. The x- and y-axes frequently use
logarithmic scaling to help visualize the entire range. Ex-
perimental sizes were kept small enough to remain within
the memory cache of the machine, to examine algorithmic
impacts. All plots include error bars showing the standard
deviations, but frequently those are so small that they are
not visible.

3.1. Primary metadata operations

The first experiment characterizes the scalability of the
basic metadata operations. The CREATE operation creates
an object, SET ATTRIBUTE sets an attribute on an object,
and GET ATTRIBUTE retrieves an attribute from an ob-
ject.

 50

 100

 150

 200

 250

 300

 350

 400

 10 100 1000 10000 100000

T
im

e
 (

µ
s
)

Number of objects

create
setattr
getattr

Figure 1. CREATE, GET ATTRIBUTE and SET
ATTRIBUTE timing.

Figure 1 shows the response times of all three operations
as a function of the number of objects in the device. In
all cases, a pre-determined number of objects were created
with attributes set appropriately. Next, for the CREATE,
the time for creation of an additional object was measured,
whereas for SET ATTRIBUTE and GET ATTRIBUTE, the
time to set and get an attribute on that additional object was
measured. The plot shows that latencies of all the opera-

tions increase only very slowly as a function of the num-
ber of objects, as one would expect from any reasonable
database.

The GET ATTRIBUTE operation is the fastest among
the three since it simply involves two table look-ups. The
first is to determine the type of the object and the other is to
look-up the attribute of the object. The SET ATTRIBUTE
operation involves table look-ups to test the presence and
type of the object. Then a record is inserted into the AT-
TRIBUTE table, which requires an exclusive lock on the
database. The create operation is the slowest since it in-
volves table look-ups for the presence and the type of the
object, followed by insertion of object information in OB-
JECT table and insertion of default attribute information in
ATTRIBUTE table.

3.2. List with attributes

The LIST operation is used to get a list of objects from
an OSD. Additionally, one can get attributes for each object
returned using LIST with attributes operation. The client
specifies a list of desired attributes by page and number.
The target then generates a list of objects, as in the previ-
ous case, but also supplies the requested attribute values for
each of the objects it returns.

The SQL statement for this operation is:

SELECT obj.oid, attr.page, attr.num, attr.val
FROM obj, attr
WHERE obj.pid = attr.pid AND obj.oid = attr.oid

AND obj.pid = PID AND obj.type = USEROBJECT
AND attr.page = page1 AND attr.num = num1
AND obj.oid >= OID

UNION ALL
SELECT obj.oid, attr.page, attr.num, attr.val

FROM obj, attr
WHERE obj.pid = attr.pid AND obj.oid = attr.oid

AND obj.pid = PID AND obj.type = USEROBJECT
AND attr.page = page2 AND attr.num = num2
AND obj.oid >= OID

ORDER BY obj.oid;

where both the OBJECT and ATTRIBUTE tables are con-
sulted to locate all objects. The tuples (page1, num1) and
(page2, num2) specify the attribute page and number of the
attributes to be retrieved. The statement constrains the se-
lection to objects belonging to partition PID and of user
object type. In case the client does not provide sufficient
buffer space for all the results, continuation is supported
by the final test on object identifier and by returning sorted
results.

Figure 2 shows the time to perform the LIST operation
as a function of the number of objects, but this time adds
two more parameters: number of attributes per object, and
number of attributes retrieved by the client. For example,
each object may have 10 attributes associated with it, but

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000

T
im

e
 (

µ
s
)

Number of objects

attr=100 retrieve=10
attr=100 retrieve= 5
attr=100 retrieve= 1
attr= 10 retrieve=10
attr= 10 retrieve= 5
attr= 10 retrieve= 1
attr= 0 retrieve= 0

Figure 2. LIST with attributes timing, for var-
ious values of total attributes and retrieved
attributes. The bottom curve is for LIST with
no attributes.

the client is only interested in receiving one of those at-
tributes. As expected, the time for the operation is pro-
portional to the number of objects. The time increases lin-
early with the number of attributes to retrieve, as expected,
due to the cost of gathering and marshaling each of the at-
tributes. For any particular value of the number of attributes
retrieved, the curves for both 10 and 100 total attributes ap-
pear on top of each other. The effect of increasing total
number of attributes has only a slight impact on the total
time; it increases logarithmically due to the enlarged search
space.

3.3. Query

The QUERY operation is a multi-object command that
allows selection of objects based on certain criteria, with
either a union or intersection constraint. This command is
an example of off-loading computation to the disk. The
power of this command is further highlighted in the case of
network-attached storage environments, where rather than
bringing the data across the network for clients to process,
the computation can be performed directly on the disk, re-
turning only matching entries to the client.

The SQL statement for this operation is:

SELECT attr.oid FROM coll, attr
WHERE coll.pid = attr.pid AND coll.oid = attr.oid

AND coll.pid = PID AND coll.cid = CID
AND attr.page = page1 AND attr.num = num1
AND attr.val BETWEEN min1 AND max1

UNION
SELECT attr.oid FROM coll, attr

WHERE coll.pid = attr.pid AND coll.oid = attr.oid
AND coll.pid = PID AND coll.cid = CID
AND attr.page = page2 AND attr.num = num2

AND attr.val BETWEEN min2 AND max2;

The QUERY command shown here tries to retrieve objects
belonging to the collection CID within the partition PID
that match two query criteria specified by the tuples (page1,
number1, min1, max1) and (page2, number2, min2, max2).
The “min” and “max” values are the constraints on the at-
tribute value (“val”) that serve to restrict the range of selec-
tion. While this example shows the union of the two crite-
ria, the intersection form is similar. Since SQLite’s query
optimizer is not very sophisticated, we were careful to or-
der the tables in the FROM clause properly, and to order the
terms in the WHERE clause to get the desired query plan.

The above translation is optimized for the case when the
number of objects within a collection is relatively small
compared to the total number of objects within the de-
vice. If, however, the sizes are comparable, then a query
that directly selects the objects matching the criteria and
finally constrains the selection to the collection member-
ship would be more efficient. But this alternate form does
not scale well if many objects match the criteria. Based
on some function of number of objects, collection size and
expected matches, either of the queries can be selected.

There are five variables that impact the performance of
QUERY: the number of objects in the database, the number
of objects in the collection, the number of attributes per ob-
ject, the number of query criteria, and the number of objects
that match the criteria. The QUERY command is flat with
respect to the total number of objects in the device, as one
would expect, but is affected by the collection size, match
size and number of criteria. We ran the experiment with
the INTERSECTION of query criteria for various combi-
nations of number of attributes per object, collection size,
and number of query criteria.

In Figure 3, we show the effect of the number of matches
on the latency of the QUERY operation. Figure 4 shows the
effect of the number of query criteria, and Figure 5 shows
the effect of the total number of attributes already present
on each object. All three graphs plot latency of the QUERY
operation as a function of the number of objects in the col-
lection.

All the figures show a linear relationship between the la-
tency and the number of objects within the collection, since
the query tests the criteria on each member of the collec-
tion. As shown in Figure 3, there is very minimal impact
resulting from the number of matches, which only affects
the time to assemble the results. Also as the number of
number of objects increases, the time becomes dominated
by scanning the collection for object membership.

Figure 4 shows a linear relationship between the num-
ber of query criteria and the execution time. Each query
criterion adds a select sub-query to the SQL statement,
thereby increasing the time proportional to the number of
sub-queries. In the case of a union of query criteria, one

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
im

e
 (

µ
s
)

Number of objects in the collection

criteria = 2
attributes = 10

match=1000
match= 300
match= 100
match= 30
match= 10
match= 1

Figure 3. QUERY timing, for various values of
the number of matching objects.

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
im

e
 (

µ
s
)

Number of objects in the collection

match = 10
attributes = 10

criteria=10
criteria= 7
criteria= 4
criteria= 2
criteria= 1

Figure 4. QUERY timing, for various values of
the number of selection criteria.

can collapse the multiple select statements to one with the
query criteria specified in the where clause. But for inter-
section that optimization does not work. We are currently
working on proper table organization and SQL design to
further optimize all types of QUERY operations.

Finally Figure 5 shows the logarithmic affect of the
number of attributes per object on the operation latency.
The number of attributes and number of objects within the
device have only an indirect effect on the latency by in-
creasing the size of the search space.

3.4. Set member attributes

In many scenarios it is often efficient to combine multi-
ple operations into a single command by amortizing fixed
costs like network round-trips and disk seek times. For ex-
ample, take the case of increasing the version number of all
files within a project. One can solve the problem by includ-
ing all the objects belonging to the project in a collection

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
im

e
 (

µ
s
)

Number of objects in the collection

match = 10
criteria = 2

attr=200
attr= 20
attr= 2

Figure 5. QUERY timing, for various values of
the number of attributes per object.

and then use the SET MEMBER ATTRIBUTES command
to set the version number attribute on all the objects at once.

The SQL statement for this command is:

INSERT OR REPLACE INTO attr
SELECT PID, coll.oid, page1, num1, val1

FROM coll WHERE coll.cid = CID
UNION ALL
SELECT PID, coll.oid, page2, num2, val2

FROM coll WHERE coll.cid = CID;

where two attributes are set on each member of the collec-
tion CID. The two select statements generate values to be
used to update the attribute tables. The tuples (page1, num-
ber1, val1) and (page2, number2, val2) were specified by
the user, along with the PID and CID in question. The se-
lect statements look up the objects in the collection, and the
insert or replace statement updates the attributes of those
objects.

There are four variables that affect the performance of
SET MEMBER ATTRIBUTES: number of objects in the
collection, number of attributes being set, total number of
objects in the database and total number of existing at-
tributes per object. The last two variables have an indirect
impact on performance through the change of the size of
the tables. However, as seen from the SQL statement, the
size of the collection and the number of attributes to set will
have a direct impact on performance.

Figure 6 shows the time to perform a SET MEMBER
ATTRIBUTES operation as a function of the number of
objects in the collection. Only one attribute is set. As ex-
pected, the graph shows a linear relationship between the
latency and number of objects in the collection. Chang-
ing the total number of attributes already existing on each
object has only a logarithmic effect due to the increased
search space. Next we examine the impact of the num-

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
im

e
 (

µ
s
)

Number of objects in the collection

set = 1

attr=40
attr=20
attr= 2

Figure 6. SET MEMBER ATTRIBUTES timing,
for various numbers of total attributes.

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
im

e
 (

µ
s
)

Number of objects in the collection

attributes = 10

set=10
set= 5
set= 3
set= 2
set= 1

Figure 7. SET MEMBER ATTRIBUTES timing,
for various numbers of attributes.

ber of attributes that are set per collection object. Figure 7
shows the results, with the total number of attributes per
object fixed at 10. There is a linear relationship between
the number of attributes to be set and the execution time.

4. Related work
In addition to our work, various implementations of

OSD targets are also available. IBM has developed a pro-
totype of an object-based controller called ObjectStone [5],
which uses the iSCSI transport like our emulator. The tar-
get is only available in binary form. It uses gdbm to store
attributes, but the key/value arrangements are unknown.

Intel [6] also has a target OSD emulator for an older
version of the protocol. It implements attributes as separate
files in a local file system. Work from Du et al. [2] builds
on this implementation by adding security, but leaves the
attribute implementation unchanged.

EBOFS [11] is an object file system that manages the

low-level storage of object-based disks. It uses B-trees
to perform object look-ups on disk, index collections, and
manage block allocation. By directly interacting with the
raw block device, EBOFS avoids the local file system in-
terface. However, EBOFS does not implement attributes.

5. Conclusions and future work
In this paper we have presented a SQL-based design

of attribute storage for object-based storage devices. This
work describes an implementation for general purpose pro-
cessors and operating systems using an embedded SQL
database, but the concepts and trade-offs are likely to ap-
ply to hardware solutions as well. Using a database for at-
tributes rather than storing them as unrelated files permits
efficient implementation of fast indexing operations sup-
ported by OSDs.

Future work with our OSD target emulator will focus
on improving database performance, by adding indexes to
the tables where they will be useful. We will also recon-
sider the entire design in light of real-world usage models
of OSDs in parallel file systems. Concurrent operation of
metadata commands to service multiple clients will require
a locking strategy for rows or tables so that multiple threads
can proceed independently.

References
[1] A. Devulapalli et al. Attribute Storage Design for

Object-based Storage Devices.
http://www.osc.edu/˜ananth/papers/msst07-techreport.pdf.

[2] D. Du, D. He, C. Hong, J. Jeong, et al. Experiences in
building an object-based storage system based on the OSD
T-10 standard. In Proceedings of MSST’06, College Park,
MD, May 2006.

[3] T. Fujita and M. Christie. tgt: framework for storage target
drivers. In Proceedings of the Ottawa Linux Symposium,
Ottawa, Canada, July 2006.

[4] D. R. Hipp et al. SQLite. http://www.sqlite.org/, 2007.
[5] IBM Research. ObjectStone. http://www.haifa.il.ibm.com/

projects/storage/objectstore/objectstone.html.
[6] Intel Inc. et al. Intel open storage toolkit.

http://sourceforge.net/projects/intel-iscsi/, 2007.
[7] ISO/IEC. Database Language SQL, July 1992.
[8] P. Nelson et al. gdbm.

http://www.gnu.org/software/gdbm/, 2007.
[9] Oracle Inc. et al. Oracle Berkeley DB.

http://www.oracle.com/database/berkeley-db/, 2007.
[10] R. O. Weber. Information technology—SCSI object-based

storage device commands -2 (OSD-2), revision 1.
Technical report, INCITS Technical Committee
T10/1729-D, Jan. 2007.

[11] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proceedings of OSDI’06, pages
307–320, Seattle, WA, Nov. 2006.

