
Integrating Parallel File Systems with Object-Based
Storage Devices

Ananth Devulapalli
Ohio Supercomputer Center

ananth@osc.edu

Dennis Dalessandro
Ohio Supercomputer Center

dennis@osc.edu

Pete Wyckoff
Ohio Supercomputer Center

pw@osc.edu
Nawab Ali

The Ohio State University
alin@cse.ohio-state.edu

P. Sadayappan
The Ohio State University

saday@cse.ohio-state.edu

ABSTRACT
As storage systems evolve, the block-based design of today’s
disks is becoming inadequate. As an alternative, object-
based storage devices (OSDs) offer a view where the disk
manages data layout and keeps track of various attributes
about data objects. By moving functionality that is tradi-
tionally the responsibility of the host OS to the disk, it is
possible to improve overall performance and simplify man-
agement of a storage system. The capabilities of OSDs will
also permit performance improvements in parallel file sys-
tems, such as further decoupling metadata operations and
thus reducing metadata server bottlenecks.

In this work we present an implementation of the Parallel
Virtual File System (PVFS) integrated with a software em-
ulator of an OSD and describe an infrastructure for client
access. Even with the overhead of emulation, performance
is comparable to a traditional server-fronted implementa-
tion, demonstrating that serverless parallel file systems us-
ing OSDs are an achievable goal.

1. INTRODUCTION
The ability of current storage systems to supply the I/O

data rates needed by high-end computing applications has
been insufficient for many years. While Moore’s Law shows
how processing elements are becoming faster over time due
to increased chip densities, performance improvements in
magnetic storage occur at a much slower rate. To meet the
throughput and reliability demands of applications, parallel
storage systems composed of commodity disks are used. The
use of commodity components in these systems lowers the
cost, but adds the expense of more complex implementation,
management and client overhead.

It is an opportune moment to consider redefining the way
in which storage is treated in a computing system. Cur-
rently, a disk drive is treated as a “dumb” peripheral. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC07 November 10-16, 2007, Reno, Nevada, USA
Copyright 2007 ACM 978-1-59593-764-3/07/0011 ...$5.00.

operating system instructs the disk what data to write, and
in what location. Further, the operating system does not
expose any information about how the data is related. How-
ever, modern disk drives are actually quite complex. They
perform write buffering, block remapping, command reorder-
ing, selective read-ahead and other operations on their own.
It is the historical mode of interaction with storage that in-
hibits major improvements in performance, scalability and
manageability.

With the recent introduction of an ANSI standard for
a new interface to storage devices [34], the semantic level
of communication with a disk drive becomes significantly
higher. The standard specifies an object-based interface to
storage rather than a block-based interface, among other
important features. Unlike block-based devices, an object-
based storage device (OSD) is aware of the logical data or-
ganization as defined by users. It manages all the internal
layout decisions for data and keeps a variable set of meta-
data for each object. These features radically change the
role of a storage element in a computing system. Rather
than being relatively passive, as with block-based devices,
an OSD can take a more active role in managing all aspects
of storage, including data, metadata, security and reliability.

High-performance computing environments stress storage
systems more heavily due to the specialized workloads seen
there. Data is often streamed in large blocks unlike the small
random accesses used in desktop environments. Parallel ap-
plications also tend to access storage cooperatively, allowing
for better overall throughput. However, the metadata load
in parallel file systems can sometimes be a major bottle-
neck [32, 31, 23]. Thus parallel file system designers are
faced with a new and unique set of challenges for deploying
OSDs. Overcoming these challenges will result in improved
performance and reduced component count. While the oper-
ation set offered by an OSD is richer than that of traditional
block-based devices, it does not provide all of the function-
ality desired by a parallel file system.

Many parallel file systems [4, 20, 35] already represent
file data as objects. However, the storage devices them-
selves still maintain a simple block-based view of the storage
medium. All decisions related to data layout and organiza-
tion are the responsibility of the file system. As such these
implementations are unable to leverage the capabilities of
OSDs. Our work instead aims to integrate parallel file sys-
tems with true object-based storage devices. However, since
the OSD specification is relatively new, there are no readily

available hardware platforms.
OSDs can potentially simplify the design of parallel file

systems by obviating the need for dedicated I/O and meta-
data servers. Moving the data and metadata storage logic
directly onto the OSDs can effectively decouple the cluster
nodes from the storage subsystem. However, this may not
improve the performance of parallel file systems in terms of
data throughput and latency. OSDs are after all, logical de-
vices based on regular disks and as such the disk throughput
and latency of OSDs is equivalent to that of regular disks.
However, OSDs offer parallel file systems significant oppor-
tunities for scalability and manageability. By removing the
most common bottlenecks found in the design of current
parallel file systems (dedicated metadata and I/O servers),
an OSD-based file system can be easily scaled up. Offload-
ing security, data layout and management to the disks also
simplifies global storage management.

The main contribution of our work is to examine the fea-
sibility of OSDs for use in parallel file systems. A new in-
frastructure for experimenting with OSDs, from initiator to
target, is presented. We also introduce a modified version of
the Parallel Virtual File System (PVFS) that uses software-
emulated OSDs to store data, along with performance re-
sults from microbenchmarks and applications. Even with
the overhead of emulation, the performance of our OSD-
enabled parallel file system is comparable to a traditional
PVFS implementation, demonstrating that serverless paral-
lel file systems using OSDs are an achievable goal.

2. BACKGROUND
In the past, distributed file systems, such as NFS [21] and

AFS [19], were designed with servers in front of storage that
handled requests from multiple clients. The servers were re-
sponsible for both data and metadata operations. Though
this design is simple, it suffers from problems such as scal-
ability, load imbalance, and network hot-spots. In contrast
to this, parallel file systems, such as PVFS [2] and Lus-
tre [4], segregate metadata from data operations to provide
improved data throughput. This motivated the deployment
of specialized servers for metadata and data operations. Fig-
ure 1 shows the architecture used by such file systems. Es-
sential components of this design are the interconnect, the
file system clients, the metadata servers hosting metadata
and the storage or I/O servers hosting the data.

Figure 1: Architecture of Modern Storage Systems.

In such parallel file systems, storage servers are gener-
ally fully provisioned computers, which allows for power-
ful file system semantics [3], at the expense of introducing
another layer in the data path. However, systems such as

NASD [10] discard this intermediate layer to remove the ad-
ditional store-and-forward overhead, but end up sacrificing
functionality. With OSDs it may be possible to eliminate
this intermediate layer to achieve both good performance
and powerful functionality. Furthermore, many aspects of
the metadata management can be offloaded to OSDs, re-
ducing the number of metadata nodes required for a given
performance target.

2.1 Object-Based Storage Devices
An object-based storage device (OSD) organizes and ac-

cesses data as objects rather than as a simple stream of
bytes. Figure 2 shows how OSDs transform the storage
architecture. In the traditional model, the host operating
system (OS) is responsible for the data layout and all appli-
cation requests have to be translated by the OS into logical
block addresses. In the OSD model, the job of organizing
the data on the storage medium is moved to the OSD.

Figure 2: Comparison of Block-based and Object-
based Storage Models. The Data Storage Manage-
ment unit has moved from the kernel to the OSD.

The OSD specification [34] defines an object as an ordered
set of bytes associated with a unique identifier. Addition-
ally, each object has a set of mandatory and user-defined
attributes, or metadata, about the object. Some of the pre-
defined attributes are familiar from most file system designs,
such as size and modification time.

An OSD has four types of objects: the root object, parti-
tions, collections, and user objects. Every OSD has exactly
one root object whose attributes control settings for the en-
tire storage device. A partition defines a namespace for col-
lections and user objects. User objects are the entities that
contain data and metadata. Collections are used to facilitate
fast indexing of user objects based on their attributes.

With block-based storage, the security policy controls each
device on a per-drive basis, usually through switch-mediated
per-node access controls. With OSDs, the security policy is
much more fine grained, in that access to each object can

be controlled individually. In typical storage area networks,
there is a server or controller that sits in front of devices to
enforce security policies. This creates a bottleneck and lim-
its scalability. In contrast, with an OSD, every command
is accompanied by a security capability that identifies the
rights of the user issuing the command.

Clients interact with OSDs through SCSI commands [33].
Some of the basic and easily recognizable commands are
CREATE, READ, WRITE and APPEND. In addition to
manipulating an object, each command is optionally able
to get and set particular object attributes. The results of
the data operation as well as any retrieved attributes are
returned to the initiator through normal SCSI mechanisms.

3. SYSTEM DESIGN
This section explains the design and implementation de-

tails of our OSD infrastructure. The software has two main
components, the OSD initiator and the OSD target. Fig-
ure 3 shows the components of the architecture and their re-
lationships. The initiator and the target communicate with
each other using iSCSI [26]. The iSCSI protocol enables
the transport of SCSI commands over a network, usually
TCP/IP. The following sub-sections explore the design is-
sues and the choices made by us during our implementation
of an OSD initiator and target. Issues related to integra-
tion of a parallel file system with the OSD infrastructure
are discussed in Section 4.

Figure 3: Software architecture of the OSD infras-
tructure.

3.1 OSD Initiator
The OSD initiator library exports the interface used by

client applications to communicate with the OSD target.
The library can be used directly, or as a building block for
file systems or other middleware. It provides calls to cre-
ate OSD commands, submit them to devices and retrieve
results. All operations are asynchronous and independent.
The initiator also manages device enumeration and mapping
of device names to system interfaces.

In order to send a command to a target, an application

first uses our initiator library to create a Command Descrip-
tor Block (CDB). This is a 200-byte chunk of data defined
by the specification [34] that conveys most of the informa-
tion required to designate a command: operation code, par-
tition, collection and object identifiers as necessary, offset
and length, capabilities for access control and optional get
and set attribute parameters. Along with the CDB, the ap-
plication also provides pointers to output data, input data
and a “sense” buffer for returned error information.

To transport the command to the target device, we use
iSCSI for its convenience and ubiquity. In particular, we
use the existing Linux in-kernel iSCSI client implementa-
tion. The kernel version offers good performance and is a
mature code base that is present on all modern Linux sys-
tems. It currently supports two transport layers: TCP/IP
and InfiniBand [16]. Our initiator directly generates SCSI
commands and submits them to the kernel through its“SCSI
mid-layer,” making it possible to use any SCSI transport
such as locally attached SATA or fibre channel drives.

The initiator library submits the fully formed command
descriptor block to the kernel SCSI mid-layer through an
interface called “bsg.” This is a recent development in the
Linux kernel meant to serve as a generalization of the exist-
ing“sg” interface to all block devices, not just SCSI. The key
feature for us in choosing bsg is its ability to handle CDBs
that are longer than 16 bytes and to support bidirectional
commands. As any OSD command can also retrieve at-
tributes, bidirectionality is frequently required. Commands
are passed to the kernel via a write to a character device.
Completed commands are retrieved by reading the character
device, which can be polled for status too. The split-phase
asynchronous nature allows us to manage multiple outstand-
ing commands to one or many target devices.

Beyond the inclusion of patches to add the bsg interface,
other changes to the mainline Linux kernel are also required,
the bulk of which are needed to support bidirectional com-
mands in the SCSI mid-layer and iSCSI transport. One
handy change to bsg that we added is the support for I/O
vectors to minimize data copying in the initiator library. The
effort to maintain these forward-looking patches is worth
the ability to leverage large amounts of working infrastruc-
ture related to SCSI and iSCSI processing. Over time, the
changes will certainly be absorbed into mainline Linux.

One of the more difficult features to handle cleanly in the
initiator is the ability to set and retrieve arbitrary attributes
along with any command. Each command can retrieve one
or more attributes of an object or it can retrieve a well-
defined “page format” of attributes. It can also set one or
more attributes. There are two forms to specify the at-
tribute requirements in the CDB, with different limitations.
The list format requires sending output data with a list of
the attributes requested. When retrieved, attributes are de-
livered at a specified offset in the input data that is returned.
There are alignment constraints on the offsets, and output
and input buffers must be manipulated so that the data and
attributes land at the correct locations.

While our initiator design could have placed on the user
the onus of constructing the proper CDB and input and out-
put buffers, this would result in clumsy application code and
exposure of unnecessary details to the applications. Instead,
we crafted the interface to build the CDB given a concise
list of the attributes to set and get. After the command
completes, another helper routine resolves the returned at-

tributes and arranges for their retrieval by concise pointer
dereferences. Furthermore, there is no copying of input or
output data due to the bsg I/O vector patch.

3.2 OSD Target
The OSD target is responsible for iSCSI session manage-

ment, processing requests from initiators, accessing or creat-
ing objects, as well as potentially setting and retrieving at-
tributes, and finally sending back an appropriate response.
This response includes an indication of the final result of
the command, and in the event of an error, the appropriate
sense code [33].

There is currently no iSCSI target support in mainline
Linux, nor does that appear to be likely in the future. But
there are a number of iSCSI target implementations avail-
able, ranging from pure software to hardware-specific drivers
[29]. We chose tgt [9], a user-space iSCSI target implementa-
tion for block-based devices. It requires no kernel modifica-
tions and matches the performance of other in-kernel iSCSI
target implementations. The iSCSI target code maintains
connections with initiator devices and demarshals their re-
quests. It sends the command descriptor block and data
pointers to the OSD command processing layer. Finally the
response and output data is marshaled and sent to the ini-
tiator.

Beyond iSCSI processing, we also need code to process
OSD commands, not just the block commands supported by
most targets. There are a few OSD target implementations
available, but none was suitable either because of reliance
on an old and possibly incompatible iSCSI stack [28, 17], or
because of unavailability of source code [6, 15]. The existing
available implementations are also incomplete and based on
an older version of the OSD specification. They would have
also required a major overhaul of the code to work with tgt.
This led us to develop an OSD command processing engine
in the context of the tgt framework. Our goal for the target
is to achieve conformity with the OSD specification [34] and
to attain a comparable level of performance with existing
servers. We are not attempting to address broader industry
objectives such as device integration of an OSD target. This
fits with the purpose of our current work which is to examine
the feasibility of OSDs in the context of parallel file systems,
and not on development of the OSD target itself.

OSD commands can be classified into the following cate-
gories: object manipulation, input/output, attribute manip-
ulation, security, and device management. Our OSD target
currently implements all object manipulation, input/output,
and attribute manipulation commands. Work on the other
commands, including optional commands for collections, is
in progress. Almost all OSD commands can be accompanied
by attribute manipulation requests, which our OSD target
fully supports.

The primary task of the target is the manipulation, cre-
ation and destruction of objects and their attributes. The
actual layout and management of objects on disk can be im-
plemented in a couple of ways. One is to rely on an underly-
ing file system like ext3 [30] for low level storage operations,
while still controlling the high level organization of objects.
Another option is to manage block allocations ourselves and
access a raw block-based partition directly. This approach
may provide better performance, but has considerable man-
agement overhead and invariably would lead to much code
duplication. Out of simplicity, we have chosen the first op-

tion and rely on an underlying local file system. For higher
level object organization and management, our implemen-
tation currently uses a one-to-one mapping between user
objects and files.

One of the interesting features of OSDs is per-object user-
defined attributes which allows increased semantic control
over objects. The desire for fast look-ups and flexible ma-
nipulation of attributes, compounded with the potentially
large number of attributes per objects, suggested the use
of a database for their management. We use SQLite [14],
a light-weight embedded SQL database, to manage object
attributes. However there are some trade-offs involved with
SQLite. For instance, while SQLite provides rich SQL se-
mantics, it lacks a framework for multi-threaded applica-
tions, like fine-grained table and row locks. That said, the
real benefits of an SQL database will arise when dealing
with collections, which requires fast attribute operations on
multiple objects.

4. MAPPING PARALLEL FILE SYSTEMS
TO OSDS

In this section we explore issues related to mapping par-
allel file system requirements to OSD capabilities. The ex-
ercise involves choice of the object size used for mapping
the file chunks, data layout, metadata mapping, security in-
tegration among other things. We will explain the issues
we encountered while mapping PVFS onto OSDs and follow
it up with mismatches between parallel file system require-
ments and current OSD capabilities.

4.1 Mapping PVFS to OSDs
Parallel Virtual File System (PVFS) is an open-source dis-

tributed parallel file system. The file data is striped across
multiple I/O servers to increase overall throughput, and co-
operating clients can use parallel I/O calls to access data
concurrently. It also supports parallelism in the metadata
space: multiple metadata servers can share the load for oper-
ations such as file look-ups, creates, and directory traversals.
The metadata aspect of a file system workload can be quite
significant at times [23].

server
metadata

server
metadata

server
IO

server
IO

server
IO

System Area Network

client client client client client

Figure 4: Architecture of Typical Server-Fronted
Storage System.

Our long-term vision is to discover just how much parallel
file system functionality can be supported purely by using

standards-compliant object storage devices. The first step
on that path is to move the I/O workload to OSDs. In
PVFS, each server process can act as either an I/O server or
a metadata server or both, depending on the configuration;
this architecture is shown in Figure 4. To construct a PVFS
environment using OSDs as the data store, we disable the
I/O server functionality but continue to use the metadata
server functions unmodified, as shown in Figure 5. The I/O
servers are replaced with emulated OSD targets.

OSD OSD OSD
server

metadata

System Area Network

client client client client client

server
metadata

Figure 5: Architecture of Parallel File System using
OSDs as I/O Targets.

The bulk of the modifications to PVFS are in the client
libraries. Instead of sending requests to the PVFS I/O
servers, clients must generate SCSI commands and send
them to an OSD server. This transformation of the soft-
ware is fairly straightforward due to the abstractions already
present in PVFS. State machines are used as the mechanism
to manage multiple phases of a single logical operation such
as a create that may need to communicate with multiple
servers (or OSDs). Most client operations in PVFS use a
“message pair” state machine that essentially implements a
parallel remote procedure call to the servers. For OSDs,
we replaced this building block with one that submits SCSI
commands and retrieves the results.

PVFS uses BMI [1] for communication between clients
and servers. Implementations exist for TCP, InfiniBand
and Myrinet. We continue to use the TCP communication
layer to interact with the metadata servers, but not with
OSDs. For them, a new BMI module is used to minimize
code changes. It does not implement the basic send and re-
ceive calls, but does provide name resolution and manages a
list of outstanding messages. OSD commands are submitted
to the upper layer job interface as a result of state machine
operations. BMI picks up the results of these jobs and allows
the state machine to continue to the next phase.

During initialization, PVFS looks at a configuration file
on the metadata server where a line specifies if OSDs are be-
ing used as the I/O targets instead of PVFS servers. Other
minor changes are required to integrate PVFS with OSDs,
such as disabling commands that modify server logging lev-
els. Most operations afford obvious translations, such as
create, remove, read, write and flush. Others require more
care; for example, the “ping” server command becomes a
SCSI “test unit ready” command, and “stat” for the file size
becomes a “get attribute” command for the object logical

size.
The biggest design implications result due to the differ-

ences in the presumed flow control implementations of the
underlying networks. In PVFS, a “flow” is used by the client
to keep some number of pipelined communications going in
the network. OSDs use any of a number of SCSI transports,
all of which are expected to do their own flow control. With
SCSI and iSCSI in particular, the target is responsible for
the flow control, permitting it to manage its limited buffer
space when serving multiple clients. Thus, for our imple-
mentation we do not use the flows in PVFS but just submit
commands directly and let the target control the data mo-
tion by issuing the existing iSCSI mechanism.

Another issue is related to the internal identifiers that
PVFS uses to track files and directories. These identifiers are
64-bit integers that are partitioned in ranges across all the
servers in the configuration. This makes it easy to identify
which server holds a particular object by looking up the han-
dle in the static table. Mapping PVFS handles to OSD 64-
bit object identifiers seems like an obvious approach. How-
ever, when allocating a new handle, a PVFS client instructs
each I/O server what range of handles it may use. This API
is not present in OSDs—either the client specifies a partic-
ular handle or allows the device to choose one. Currently
we rely on the fact that our implementation always chooses
increasing object identifiers and “seed” the target at format-
ting time with the lower bound of the handle range. A more
flexible handle mapping is necessary, perhaps by encoding
both an object identifier and server identifier wherever han-
dles are stored in PVFS.

4.2 Possible OSD Extensions
Our experience with the integration of PVFS and OSDs

has exposed us to both the powerful features of OSDs, and
the mismatches between the requirements of PVFS and the
capabilities of OSDs. On the positive side, OSDs enable ag-
gregate operations such as the creation of multiple objects
using a single command. This capability can be used to
speed up the file create operation in PVFS [5]. On the other
hand, there are some infrastructure drawbacks and deficien-
cies in OSD capabilities.

The SCSI transport layer permits a target device to re-
turn exactly one buffer, either for a read or bidirectional
command. For a read command that requests attributes,
both the read results and the retrieved attributes appear in
the single “data in” buffer that SCSI returns. The offset of
the retrieved attributes in this buffer is chosen by the client
in advance. If, for example, the client eagerly tries to read
up to 10 MB of an object but also wants to retrieve an at-
tribute, the client will set the offset to be just past 10 MB
in the returned buffer. If the object turns out to be smaller
than this size, the server must send 10 MB of zeroes over
the network just to fill in the attribute at the requested off-
set. Currently we get around this restriction by issuing two
commands: one for the data and a second for the attribute.
The OSD will truncate the data result at the actual length.
A better solution would involve letting the OSD specify the
retrieved offset for attributes or adding a scatter capability
to the SCSI transport layer.

Related to this issue is the lack of a scatter/gather fa-
cility on the SCSI target. MPI-I/O calls that use complex
data layouts can generate fragmented views of the file data,
so that a particular write operation from the client will be

scattered in many chunks to the logical object stored on the
OSD. Using the PVFS I/O server protocol, the client can
send a description of how to scatter the data. The OSD
specification does not support this, forcing the client to use
many smaller contiguous operations instead. Having a sim-
ple scatter/gather facility at the target would both simplify
operations from the client point of view and improve perfor-
mance.

OSDs lack atomic operations such as Fetch-and-Add and
Compare-And-Swap that enable serialization on a device.
There are other ways to gain exclusive control of a device,
but they are too coarse grained to use as building blocks for
locking and coherence. It is possible to use a distributed lock
manager for serving locks, but atomics-capable OSDs would
further improve the scalability of the system. Moreover,
implementing atomics should not be too costly since the
existing attribute infrastructure could be leveraged. These
remote atomic operations can further offload file system op-
erations such as directory entry creation and removal. They
could also help to realize disk-managed distributed databases
[22].

5. EXPERIMENTS
The goal of the experiments described in this section is

to evaluate our OSD infrastructure and to show that using
object-based storage with a real parallel file system is feasi-
ble. In spite of the fact that the OSD is emulated in software,
the performance is comparable to the usual server-fronted
storage approach. When hardware OSDs become available,
the performance will most likely be better than what we
show here.

Our experimental platform is a Linux cluster consisting of
30 nodes. Each node has dual AMD Opteron 250 processors,
2 GB of RAM and an 80 GB SATA disk. The cluster runs
the Linux operating system, version 2.6.20. The onboard
Tigon 3 Gigabit Ethernet NIC is used for communication,
with a single SMC 8648T 48-port switch.

5.1 Overheads in OSD Target Emulator
First we attempt to quantify some of the overheads intro-

duced by our emulator by running a simple command to get
attributes. Table 1 shows the time spent in each of the four
phases of command processing. “SQLite” represents the cost
of object and attribute look-ups. “CDB” covers the request
parsing and response creation costs. “iSCSI” includes SCSI
transport layer processing. Finally, “Initiator”represents the
command processing time in the test application, client-side
iSCSI overheads and network communication latencies.

Processing phase Overhead

SQLite 81.3 ± 0.3 µs
CDB 2.2 ± 0.5 µs
iSCSI 29.9 ± 1.7 µs
Initiator 125.6 ± 2.9 µs
Total 239.0 ± 1.1 µs

Table 1: Target emulation overheads for the pro-
cessing phases.

As these experiments use an emulator of an object-based
storage device, the results will not be representative of true
device behavior. An integrated device would be expected

to have dedicated hardware for most critical path functions,
such as basic SCSI and iSCSI command processing. It may
also have features such as content-addressable memory to
make object and attribute look-ups fast.

5.2 Stat Microbenchmark
Figure 6 (left) shows the latency of a “stat” operation on

OSD and PVFS I/O servers as a function of the number
of I/O elements. This operation is used to find information
about files such as the size or modification time, and requires
communicating with every storage device. Both curves have
similar slope, although there is slightly more overhead with
OSDs.

A simpler “ping” microbenchmark produces similar re-
sults, but without the processing costs of object look-up,
roughly 83 µs as shown in Table 1. The round-trip time
with the OSD emulator is 101 µs, compared to 124 µs for the
I/O server. The scaling as more server elements are added
is slightly better in the OSD case, which requires 1.7 ms
compared to 2.0 ms for the PVFS I/O server.

5.3 Create Microbenchmark
Figure 6 (right) shows the latency of a “create” operation

on OSD and PVFS I/O servers. Note that during this test
the metadata and I/O servers use a RAM-based file system
to remove the effects of physical disk seek times. Again,
there is a slight performance overhead in the OSD system
due to the impact of the iSCSI and SQLite layers, but per-
formance scales identically with increasing number of I/O
elements.

Figure 7 shows the aggregate rate of create operations
with one I/O element as clients are added. This is a stress
test designed to see what limitations on create are caused
by the PVFS I/O server or OSD. On the left are the per-
formance results using a real disk, where both implementa-
tions are limited by seek time. In order to analyze protocol
processing costs, the results using RAM-based storage are
shown on the right. OSD create throughput is about 80% of
that of a PVFS I/O server. The reason for this can be seen
directly from the processing time for SQLite, as shown in Ta-
ble 1. The PVFS I/O server uses a simpler DB4 database.
Use of fine-grain multi-threading can further boost perfor-
mance of OSD based PVFS.

5.4 I/O Throughput
To measure throughput, we use perf, an MPI-I/O bench-

mark from ROMIO. In perf, each parallel process writes a
data array to a shared file, then reads it back, using non-
collective I/O operations with individual file pointers. MPI
invokes PVFS to perform the file accesses, which in turn
sends requests to PVFS I/O servers, or initiates SCSI re-
quests. Figure 8 shows the throughput for one client com-
municating with one PVFS server (on the left), or one OSD
(on the right).

The curves for read and write are similar in both plots
and represent the maximum network throughput achievable
by either the I/O server or OSD. The lower curve shows the
throughput when the data is flushed to disk after the write,
and reflects the limit of the single SATA drive used for these
tests. The maximum throughput for the OSD emulator of
about 80 MB/s is lower than the 95 MB/s measured with
the PVFS I/O server. This is due to the transfer limit of
256 kB imposed by the SCSI layer and the lack of pipelining

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8 10 12 14 16

T
im

e
 (

m
s
)

Number of I/O elements

OSD

I/O server

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14 16

T
im

e
 (

m
s
)

Number of I/O elements

OSD

I/O server

Figure 6: Latency as a function of the number of I/O elements; left: PVFS stat; right: PVFS create.

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

(c
re

a
te

s
/s

e
c
)

Number of clients

I/O server

OSD

 0

 2000

 4000

 6000

 8000

 10000

 0 2 4 6 8 10 12 14 16

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

(c
re

a
te

s
/s

e
c
)

Number of clients

I/O server

OSD

Figure 7: Aggregate create throughput; left: disk-based storage; right: RAM-based storage.

in our OSD emulator. However, for small message sizes, the
OSD implementation outperforms the PVFS I/O server due
to the use of multiple control messages for each data message
in the (non-OSD) PVFS I/O protocol. Enlarging the cut-off
for “small” I/O transfers beyond its current value of 16 kB
would help for small-message workloads.

The throughput of the iSCSI initiator to the emulated
OSD target, without the MPI or PVFS layers, shows that
its performance is not the limiting factor. At a 64 kB data
transfer size, write throughput is 70 MB/s and read through-
put is 91 MB/s. For 256 kB transfers, both write and read
throughput increase to 93 MB/s. The write operation is
slower than read for smaller message sizes due to the extra
“ready to send” iSCSI message used by the target to control
data flow. The maximum SCSI transfer size of 256 kB is
due to limitations on the size of the scatter/gather table,
and hence number of mapped user pages, as imposed by the
Linux SCSI mid-layer. PVFS sends multiple SCSI messages
to achieve larger transfers. Testing against an in-memory
block device target, rather than an OSD target, produces
essentially identical results.

5.5 I/O Scaling
The next set of graphs show the results of a stress test,

where a single client reads or writes to a file striped across
some number of servers. In Figure 9, the file size is 64 kB
multiplied by the number of servers, thus the work per server

stays constant as more servers are added, but the single
client moves an increasing number of bytes. For this small
size, the write and write+sync rates increase steadily for
both the I/O server and the OSD, and the OSD system sat-
urates the client’s network interface with many fewer nodes
than the PVFS I/O server system. For both, read perfor-
mance drops quickly to below 5 MB/s when the number of
servers goes much beyond four.

This massive drop-off in throughput can be explained by
looking at the TCP congestion control algorithm. For a
read, PVFS sends requests to all the servers at the same
time. Their responses create a packet storm at the client.
The switch must drop some of these packets if the total size
of the burst exceeds its internal buffering capacity. As an
experiment, we configured the TCP maximum read buffer
size on the client to 4 kB, or about two 1500-byte packets
plus headers. This effectively disables the TCP congestion
control algorithm and limits the size of the burst such that
there are no drops. With this setup, the read rate stays
high, around 80 MB/s. The problems with the additive
increase, multiplicative decrease nature of TCP congestion
control algorithms are well known [18]. Our results use Ve-
gas, the best performer of the 11 algorithms available in our
version of Linux.

5.6 Parallel Applications
To evaluate application performance, we use two bench-

 0

 20

 40

 60

 80

 100

 120

16 MB1 MB64 kB4 kB

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

I/O Size

Read

Write

Write+Sync

 0

 20

 40

 60

 80

 100

 120

16 MB1 MB64 kB4 kB

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

I/O Size

Read

Write

Write+Sync

Figure 8: Throughput as a function of message size; left: PVFS with I/O servers, right: PVFS with OSDs.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of I/O Servers

Write

Write+Sync

Read

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of OSDs

Write

Write+Sync

Read

Figure 9: Throughput as a function of the number of I/O elements for a 64 kB message size; left: PVFS with
I/O servers, right: PVFS with OSDs.

marks that are designed to mimic full application behavior.
The first is the BTIO benchmark, which is a variation of
the BT application, of the NAS Parallel Benchmarks [36]
suite. BTIO solves systems of block-tridiagonal equations
in parallel, and performs periodic solution checkpoints using
MPI-I/O calls and non-contiguous data transfers. We use
the full version of BTIO which uses collective I/O to com-
bine data accesses of multiple processes into large, regular
I/O requests. Figure 11 shows the execution time of BTIO
as a function of the number of clients. Here we compare a
parallel file system of PVFS I/O servers against one that
uses OSDs as data servers. We varied the number of clients
from 1 to 25 (BTIO requires that the number of processors
be a perfect square, i.e. 1, 4, 9, 16 etc.) while keeping the
number of PVFS I/O servers and OSDs fixed at 4. The
execution times are nearly identical, although perhaps the
OSD system achieves a slightly lower overall time to com-
pletion due to its comparatively better performance at small
message sizes.

The other application we present is the FLASH I/O bench-
mark [25]. It is designed to approximate the I/O character-
istics of the FLASH Code [24], which is used to study astro-
physical thermonuclear flashes. Figure 10 compares the per-
formance of the PVFS I/O server against the OSD. The data
shown represents only the checkpoint file test. The OSD
tests are much faster than the PVFS I/O server tests due to

overheads in PVFS for the particular patterns of writes in
this benchmark.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

251051

T
im

e
 (

s
)

Number of Processors

I/O server

OSD

Figure 10: Execution time for FLASH I/O bench-
mark.

The FLASH code uses HDF5 to store data from all tasks
to a single file, with the file contents arranged by variable,
causing each task to make multiple writes at various loca-
tions in the file. Each task first writes about 200 16-byte
chunks to disk, which takes half a second for the 25-client
case for both the PVFS I/O server and OSD. The bulk of
the data is written in 24 separate 300 kB write calls from

 0

 50

 100

 150

 200

 250

 300

 350

 400

251694

T
im

e
 (

s
)

Number of Processors

I/O server

OSD

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

251694

T
im

e
 (

s
)

Number of Processors

I/O server

OSD

Figure 11: Execution time for BTIO benchmark, left: Class B; right: Class C.

each task. With a PVFS stripe size of 64 kB, this results in
writes to each of the four servers of roughly 64 kB to 100 kB,
depending on the file offset. This is because PVFS with I/O
servers perform poorly relative to PVFS with OSD, when
writes are in the range of 64 kB, as shown in Figure 8.

6. RELATED WORK
Using an object-based interface and directly accessing disks

is not a new concept. Gibson et al. proposed Network-
Attached Secure Devices [11, 10], which supported direct
data transfer between the drive and clients, asynchronous
oversight, cryptographic integrity and an object-based in-
terface.

There exists previous work in OSDs themselves. Factor
et al. presented the latest developments in OSD technolo-
gies [7], focusing on issues related to standardization and
deployment as well as the challenges facing the adoption of
OSDs. The inherent security capabilities of object-based
storage is also an active area of research [8].

Several reference implementations of OSD targets are avail-
able. IBM has developed a prototype of an object-based
controller called ObjectStone [15]. Its front-end interface
implements the OSD protocol. IBM has open sourced their
initiator but the OSD target is released only as a binary.
Both Intel [17] and Sun [28] have their own iSCSI stacks
and partial OSD initiator and target implementations. OS-
DFS [6] is a virtual file system interface on top of object
storage that exports a typical block interface to applications,
enabling use of OSDs with legacy applications but not ex-
ploiting any new capabilities in the interface. EBOFS [35] is
an object storage backend that writes to disk without a local
file system, but currently does not implement attributes.

In addition to PVFS, there are are a number of par-
allel file systems that include object features. Lustre [3,
4], PanFS [20] and Ceph [35] explicitly deal with objects,
but store data using various non-standard object interfaces
that effectively require server-fronted storage targets. Par-
allel NFS [12] is an extension to the NFSv4 protocol [27]
that extends the delegation mechanism to account for mul-
tiple servers. It supports file, block, and OSD data storage
types [13].

7. CONCLUSIONS AND FUTURE WORK
In this work, we have demonstrated the successful inte-

gration of OSDs in a parallel file system. We have exploited
the increased semantic capabilities of OSDs and have shown
the feasibility of serverless file systems by replacing PVFS
I/O servers with OSDs. We have also analyzed mismatches
between parallel file system requirements and OSD capa-
bilities. In spite of the overhead associated with emulating
the OSD target, the performance of PVFS integrated with
OSDs is comparable to a server-fronted configuration. By
publication time we will release all software discussed in this
work as open source.

Using OSDs for I/O operations concludes the first step
in the process of integration of OSDs in a parallel file sys-
tem. In the future we plan to investigate their utility in
metadata management and issues related to flow control and
caching. Work is in progress with respect to implementation
of optional features such as collections and development of
a multi-threaded OSD target. Currently our target uses
TCP/IP for communication and we plan to investigate its
performance on RDMA capable transports like InfiniBand
and iWARP.

8. REFERENCES
[1] P. H. Carns, W. B. Ligon III, R. Ross, and

P. Wyckoff. BMI: a network abstraction layer for
parallel I/O. In Proceedings of IPDPS’05, CAC
workshop, Denver, CO, Apr. 2005.

[2] P. H. Carns, W. B. Ligon III, R. B. Ross, and
R. Thakur. PVFS: A parallel file system for Linux
clusters. In Proceedings of the 4th Annual Linux
Showcase and Conference, pages 317–327, 2000.

[3] Cluster File Systems, Inc. Lustre frequently asked
questions. http://www.clusterfs.com/faq.html.

[4] Cluster File Systems, Inc. Lustre: a scalable
high-performance file system. Technical report,
Cluster File Systems, Nov. 2002.
http://www.lustre.org/docs/whitepaper.pdf.

[5] A. Devulapalli and P. Wyckoff. File creation strategies
in a distributed metadata file system. In Proceedings
of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS’07), Mar. 2007.

[6] D. Du, D. He, C. Hong, J. Jeong, et al. Experiences in
building an object-based storage system based on the
OSD T-10 standard. In Proceedings of MSST’06,
College Park, MD, May 2006.

[7] M. Factor, K. Meth, D. Naor, O. Rodeh, and
J. Satran. Object storage: The future building block
for storage systems. In Global Data
Interoperability—Challenges and Technologies,
Sardinia, Italy, June 2005.

[8] M. Factor, D. Nagle, D. Naor, E. Riedel, and
J. Satran. The OSD security protocol. In Security in
Storage Workshop (SISW’05), San Francisco, CA,
Dec. 2005.

[9] T. Fujita and M. Christie. tgt: framework for storage
target drivers. In Proceedings of the Ottawa Linux
Symposium, Ottawa, Canada, July 2006.

[10] G. A. Gibson and R. V. Meter. Network attached
storage architecture. Communications of the ACM,
43(11):37–45, Nov. 2000.

[11] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, et al.
A cost-effective, high-bandwidth storage architecture.
In Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VIII), pages 92–103,
1998.

[12] G. Goodson, B. Welch, B. Halevy, D. Black, and
A. Adamson. NFSv4 pNFS extensions. Technical
Report draft-ietf-nfsv4-pnfs-00.txt, IETF, Oct. 2005.

[13] B. Halevy, B. Welch, J. Zelenka, and T. Pisek.
Object-based pNFS Operations. Technical Report
draft-ietf-nfsv4-pnfs-obj-00.txt, IETF, Jan. 2006.

[14] D. R. Hipp et al. SQLite. http://www.sqlite.org/,
2007.

[15] IBM Research. ObjectStone.
http://www.haifa.il.ibm.com/projects/storage/
objectstore/objectstone.html.

[16] InfiniBand Trade Association. InfiniBand Architecture
Specification, Oct. 2004.

[17] Intel Inc. et al. Intel open storage toolkit.
http://sourceforge.net/projects/intel-iscsi/, 2007.

[18] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
macroscopic behavior of the TCP congestion
avoidance algorithm. Computer Communications
Review, 27(3), July 1997.

[19] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H.
Howard, D. S. Rosenthal, and F. D. Smith. Andrew: a
distributed personal computing environment.
Communications of the ACM, 29(3):184–201, 1986.

[20] D. Nagle, D. Serenyi, and A. Matthews. The Panasas
ActiveScale storage cluster—delivering scalable high
bandwidth storage. In Proceedings of the ACM/IEEE
SC2004 Conference (SC’04), Pittsburgh, PA, Nov.
2004.

[21] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS version 3: Design and
implementation. In USENIX Summer Technical
Conference, pages 137–152, 1994.

[22] O. Rodeh. Building a distributed database with
device-served leases. Technical report, IBM Haifa labs,
2005.

[23] D. Roselli, J. Lorch, and T. Anderson. A comparison

of file system workloads. In Proceedings of the 2000
USENIX Annual Technical Conference, pages 41–54,
June 2000.

[24] R. Rosner, A. Calder, J. Dursi, B. Fryxell, et al. Flash
code: Studying astrophysical thermonuclear flashes. In
Computing in Science and Engineering, volume 2,
pages 33–41, Mar. 2000.

[25] R. Ross, D. Nurmi, A. Cheng, and M. Zingale. A case
study in application I/O on linux clusters. In
Proceedings of SC ’01, Denver, CO, 2001.

[26] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka,
and E. Zeidner. Internet small computer systems
interface (iSCSI). Technical report, IETF RFC 3720,
Apr. 2004.

[27] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck. Network file
system (NFS) version 4 protocol. Technical report,
IETF RFC 3530, Apr. 2003.

[28] Sun Inc. et al. Solaris object storage device (OSD).
http://www.opensolaris.org/os/project/osd/, 2007.

[29] F. Tomonori and O. Masanori. Analysis of iSCSI
target software. In SNAPI ’04: Proceedings of the
international workshop on storage network architecture
and parallel I/Os, pages 25–32, 2004.

[30] S. Tweedie. Ext3, journaling filesystem. In Proceedings
of the Ottawa Linux Symposium, Ottawa, Canada,
July 2000.

[31] F. Wang, S. A. Brandt, E. L. Miller, and D. D. E.
Long. OBFS: A file system for object-based storage
devices. In 21st IEEE / 12th NASA Goddard
Conference on Mass Storage Systems and Technologies
(MSST’04), pages 283–300, College Park, MD, Apr.
2004.

[32] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller,
D. D. E. Long, and T. T. McLarty. File system
workload analysis for large scale scientific computing
applications. In Proceedings of the Twentieth
IEEE/Eleventh NASA Goddard Conference on Mass
Storage Systems and Technologies, College Park, MD,
Apr. 2004.

[33] R. O. Weber. Information technology—SCSI Primary
commands - 3 (SPC-2), revision 23. Technical report,
INCITS Technical Committee T10/1416-D, May 2005.

[34] R. O. Weber. Information technology—SCSI
object-based storage device commands -2 (OSD-2),
revision 1. Technical report, INCITS Technical
Committee T10/1729-D, Jan. 2007.

[35] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proceedings of OSDI’06,
pages 307–320, Seattle, WA, Nov. 2006.

[36] P. Wong and R. der Wijngaart. NAS parallel
benchmarks I/O version 2.4. Technical Report
NAS-03-002, NASA Ames Research Center, Moffet
Field, CA, Jan. 2003.

