
A Hypergraph Partitioning Based Approach for Scheduling of Tasks with
Batch-shared I/O∗

Gaurav Khanna†, Nagavijayalakshmi Vydyanathan†, Tahsin Kurc‡,
Umit Catalyurek‡, Pete Wyckoff+, Joel Saltz‡, P. Sadayappan†

† Dept. of Computer Science and Engineering,‡ Dept. of Biomedical Informatics
The Ohio State University

+ Ohio Supercomputer Center

Abstract

This paper proposes a novel, hypergraph partitioning based
strategy to schedule multiple data analysis tasks with batch-
shared I/O behavior. This strategy formulates the sharing of
files among tasks as a hypergraph to minimize the I/O over-
heads due to transferring of the same set of files multiple
times and employs a dynamic scheme for file transfers to re-
duce contention on the storage system. We experimentally
evaluate the proposed approach using application emula-
tors from two application domains; analysis of remotely-
sensed data and biomedical imaging.

1 Introduction

The development of new technologies in several areas
is making it more feasible to take a data-driven approach
to address complex problems in science and engineering.
First, our ability to collect data has increased tremendously
with the help of advanced sensors that can rapidly cap-
ture data at high-resolutions and Grid technologies that en-
able simulation of complex numerical models. Moreover,
platforms for large scale, disk-based storage are becoming
increasingly available to store and manage large scientific
datasets.

The ultimate goal in collecting large volumes of data is
to gain a better understanding of the problem under study
and to more efficiently refine the search space for solutions.
Hence,data analysis applicationsare a key component in
data-driven science. A data analysis application accesses
and processes a subset of a dataset. Most scientific datasets

∗This research was supported in part by the National Science
Foundation under Grants #CCF-0342615, #ACI-9619020 (UC Subcon-
tract #10152408), #EIA-0121177, #ACI-0203846, #ACI-0130437, #ANI-
0330612, #ACI-9982087, Lawrence Livermore National Laboratory un-
der Grant #B517095 (UC Subcontract #10184497), NIH NIBIB BISTI
#P20EB000591, Ohio Board of Regents BRTTC #BRTT02-0003.

are stored in files. A request for the region of interest spec-
ifies a subset of data files and/or segments in data files – ei-
ther as part of the input parameters or after an index lookup,
which finds the files and file segments that can address the
request. The data of interest is then processed and trans-
formed into a data product, which is more suitable for ex-
amination by the scientist.

In earlier work [15] we examined algorithms for schedul-
ing pipelines of data processing withpipeline-sharedI/O
behavior, where files and data are shared between tasks
forming a single pipeline of data processing operations.
This paper focuses on scheduling of tasks withbatch-shared
I/O behavior [13], in which files are shared across tasks in
different pipelines. We propose a novel, hypergraph based
approach. Hypergraphs have attracted much attention for
modeling the computational structure of many parallel ap-
plications [4, 5]. The main advantages of the hypergraph
model are that a hypergraph can model asymmetric depen-
dencies and the cut metric is well suited for minimizing the
total volume of communication [4].

The approach proposed in this paper formulates the shar-
ing of files (batch-shared I/O) among tasks as a hypergraph
and employs a two-stage strategy for scheduling of tasks
and file transfers. In the first stage, tasks are partitioned into
groups via hypergraph partitioning. Each group is mapped
to a compute processor in the system. In the second stage, a
dynamic strategy is applied to order tasks in each group for
execution and to transfer files from storage system to com-
pute nodes for task execution. We experimentally evalu-
ate the proposed approach using application emulators from
two application domains; analysis of remotely-sensed data
and biomedical imaging.

2 Related Work

Most of classic work on scheduling for parallel machines
is derived from Sarkar [12], and later work such as Yang
and Gerasoulis [16]. The goal on distributed memory par-

1

allel machines is to trade-off parallelism with communica-
tion. Some of these techniques deal with a single applica-
tion structured as a DAG, while others apply to scheduling
many independent tasks. Relatively little research so far
has addressed the scheduling of data intensive jobs. In [11],
a decoupled approach to scheduling of computations and
data for data-intensive applications was proposed, and eval-
uated using a simulation testbed. However, a simple first-
come first-served scheduling strategy was used in that study.
Casanova et.al. [3] proposed modification to several heuris-
tics that were designed for compute intensive applications
on parallel machines [8] for parameter sweep applications
in a Grid environment.

Multi-query workloads also arise in the context of
database applications. The work of Mehta et al. [10] is one
of the first to address the problem of scheduling queries in a
parallel database by considering batches of queries. In [1],
Andrade et.al. propose a dynamic scheduling model for
multi-query workloads in data analysis applications. The
goal is to maximize data and computation reuse and concur-
rent execution on SMP nodes through semantic caching and
ordering of queries based on priority metric. These strate-
gies mainly target efficient reuse of results from previously
executed queries.

Chang et.al. [5] examine optimization methods for exe-
cuting data aggregation operations on disk-resident datasets
on distributed-memory machines with local disks. Drawing
from thecomputational hypergraphmodel proposed in [4],
the authors propose a hypergraph based algorithm for par-
titioning of workload among processors and for scheduling
of processing. Jain et.al. [9] model scheduling of I/O oper-
ations (with certain assumptions) as a bipartite graph color-
ing problem with two separate sets of nodes namely, disks
and processors. Our difference is that we consider grouping
and mapping of tasks to compute nodes in tandem with or-
dering of tasks and scheduling of remote I/O operations for
file transfers.

3 Applications and Problem Definition

Satellite data processing.Remotely sensed data is an
invaluable source of information for earth scientists. This
kind of data is either continuously acquired or captured
on-demand via sensors attached to satellites orbiting the
earth [6]. Datasets of remotely sensed data can be orga-
nized into multiple files. Each file contains a subset of data
elements acquired within a time period and a region of the
earth surface. For instance, a dataset in the form of a snap-
shot of the surface captured by a Landsat thematic mapper
satellite consists ofN files (usually 4 or 5 files), with each
file corresponding to a specific sensor on the satellite and
storing data captured by the sensor within the time period
and surface region specified by the ground control. When
multiple scientists access these datasets, there will likely be

overlaps among the set of files requested because of ”hot
spots” such as a particular region or time period that scien-
tists may want to study.

Biomedical Image Analysis. Biomedical imaging is a
powerful method for disease (e.g., cancer) diagnosis and
for monitoring therapy. State-of-the-art studies make use of
large datasets, which consist of time dependent sequences
of 2D and 3D images from multiple imaging sessions.
Systematic development and assessment of image analysis
techniques requires an ability to efficiently invoke candidate
image quantification methods on large collections of image
data. A researcher may apply several different image anal-
ysis methods on image datasets containing thousands of 2D
and 3D images to assess ability to predict outcome or effec-
tiveness of a treatment across patient groups.

Problem Definition. In this paper, we target configura-
tions consisting of coupled compute and storage platforms.
Datasets are stored, as a set ofdata files, on a pool of stor-
age nodes (storage cluster). Storage nodes are connected
to a pool of compute nodes (compute cluster) over a local
area network. Each compute node has one or more local
disks and can request files from any of the storage nodes.
Such configurations are likely to be common in institutions
as well as supercomputer centers, since compute and stor-
age clusters are designed with different goals in mind. A
compute cluster will have high-end processors with high-
speed networking among them. On the other hand, a storage
cluster may forgo computing power in favor of large storage
space.

A batch consists of independent sequential tasks (data
analysis programs). Each task requests a subset of files in
the environment and can be executed on any of the nodes
in the compute cluster. Data files required by a task should
be staged from the storage cluster to the compute cluster for
the task to execute correctly. A data file is the unit of I/O
transfer from the storage cluster to the compute cluster. The
tasks in the batch may share a number of files. For exam-
ple, if tasks are submitted by clients working in the same
application domain, there may be a number of overlapping
regions of interest, or ”hot spots”, as scientists in the same
domain are likely to have similar interests. Sharing of I/O
also depends on how data is distributed across data files in
the system. Requests by two jobs may not overlap in the
underlying attribute space of the dataset, but data elements
required to serve those requests might have been stored in
the same set of files. If a file is required for processing by
one or more tasks, it may be retrieved multiple times as a
whole and transferred to the respective compute nodes.

Our objective is, given a batch of tasks and a set of files
required by these tasks, to schedule the tasks in an efficient
manner so as to minimize the batch execution time. Fig-
ure 1 depicts an illustration of this problem. Each task in
the batch is represented by a compute weight, list of input

2

Figure 1. Scheduling problem.
files, and their file sizes.

4 Task Scheduling Strategies
In this paper, we examine the MinMin, MaxMin, Suf-

ferage, which are originally proposed for scheduling in-
dependent computational tasks to compute resources [8],
along with Shortest Job First heuristics and our proposed
algorithm to determine task-compute node assignments. As
in [3], we modify the MinMin, MaxMin, and Sufferage to
take into account 1) the time it takes to transfer input and
output files to and from compute nodes in the environment
and 2) files that have already been staged to a compute node
in estimating the minimum completion time (MCT) of a
task.

4.1 Shortest Job First, MinMin, MaxMin, and
Sufferage

Shortest Job First (SJF).Tasks are ordered for execu-
tion based on their expected execution times. The execu-
tion time of a taskti is calculated as the sum of the time it
takes to transfer files needed forti and the execution time
for processing the files. In the SJF strategy, the shorter the
execution time of a task is, the earlier the task is executed.

MinMin. Given a set of tasks that have not yet been
scheduled, this strategy computes the MCT of each task on
each idle node in the system. When computing the comple-
tion time for a task on a node, it takes into account, the files,
required by the task, that is already transferred to that node
by tasks previously executed on that node. Among the un-
scheduled tasks in the batch, MinMin chooses the task that
can complete the earliest and assigns it to the node that can
execute that task fastest.

MaxMin. As in MinMin, the MaxMin strategy com-
putes the MCT of a task on each idle node in the system.
Among the unscheduled tasks, it chooses the task with the
maximum MCT.

Sufferage.The Sufferage strategy looks at how much a
task will suffer if it is not assigned to the host that will run
the task fastest. The underlying idea is that a host should
execute the task that will suffer the most if the task is not
assigned to that host. The sufferage of a task is computed
as the difference between the task’s best MCT and its sec-
ond best MCT. Among the unscheduled tasks, Sufferage
chooses the task with highest sufferage and assigns it to the
node that will achieve the best MCT for the task.

4.2 A Hypergraph-based Approach

We propose a hypergraph formulation to model sharing
of files among tasks and a hypergraph partitioning based
approach to compute a partitioning and mapping of tasks
to compute nodes. The algorithm operates in two stages. In
the first stage, we partition and map the tasks to the compute
nodes. In the second stage, ordering of the tasks in each
compute node is determined.

A hypergraphH=(V,N) is defined as a set of vertices
V and a set of nets (hyper-edges)N among those vertices.
Every netnj ∈ N is a subset of vertices, i.e.,nj⊆V . The
size of a netnj is equal to the number of vertices it has, i.e.,
sj = |nj | . Weights (wi) and costs (cj) can be assigned to
the vertices (vi∈V) and edges (nj ∈N) of the hypergraph,
respectively.P = {V1, V2, . . . , VP } is aP-way partition of
H if 1) each part is a nonempty subset ofV , 2) parts are
pairwise disjoint and 3) union ofP parts is equal toV .

In a partitionP of H , connectivity λj of a netnj de-
notes the number of parts connected bynj . A net nj is
said to becut if it connects more than one part, i.e.λj > 1 .
The cost of a partitionΠ is χ(Π) =

∑
nj∈NE

cj(λj − 1) ,
whereNE is the set of cut nets and each cut netnj con-
tributescj(λj − 1) to the cutsize. Hence, this cost metric is
also known asconnectivity-1 metric. The hypergraph par-
titioning problem can be defined as the task of dividing a
hypergraph into two or more parts such that the cutsize is
minimized, while a given balance criterion among the part
weights is maintained. Algorithms based on themulti-level
paradigm, such as PaToH [4], have been shown to compute
good partitions quickly for this NP-hard problem.

4.2.1 Hypergraph Formulation for Partitioning and
Mapping of Tasks

Our goal is to partition tasks into groups such that the
amount of data transfer between the storage cluster and
the compute cluster is minimized while load balance across
compute nodes is maintained. Our hypergraph model rep-
resents each taskti by a vertexvi in the hypergraph. Each
hyper-edgenj represents a filefj and connects the ver-
tices (tasks) that require this file as input. This hypergraph
is partitioned intoP groups, whereP is the number of
compute nodes, and each group is mapped to a compute

3

Figure 2. Hypergraph representation of the
batch of the tasks displayed in Figure 1.

node. The partitioning is done so that the compute and I/O
weight of the clusters are balanced and the cost of trans-
ferring shared files across clusters is minimized. Figure 2
illustrates a partitioning of the hypergraph representation of
the sample batch shown in Figure 1.

The weight of a vertex is equal to the estimated execution
time of the corresponding task. The estimated execution
time of a task is calculated as the sum of I/O overhead (the
transfer time of files from storage nodes plus the I/O time
to read files from local disk) and the computation cost of
the task. The hypergraph based strategy globally partitions
all the tasks in a given batch into groups before any order
for task execution is determined for a group. Hence it has
to use a static vertex weights. In order to alleviate this issue
and provide a better estimate of the execution time of a task,
we compute the weight of a vertex as follows.

Let the set of files a taskti needs beFi and the number
of compute nodes in the system beP . The cost of transfer-
ring one byte of filefj , Trj , for taskti is equal to

Trj =
ProbFNE

RBW
+

(1− ProbFNE) ∗ (1− ProbFE)
RBW

(1)

Here, RBW is the I/O bandwidth between a storage
node and a compute node,ProbFNE is the probability that
task ti will be the first task to execute in its group that re-
quiresfj , andProbFE is the probability thatti executes
on a node, to which filefj has already been transferred. In
our current implementation, we assume uniform probabil-
ity distribution. Hence, we have usedProbFNE = 1

sj
and

ProbFE = 1
P . Recall thatsj is the size of the hyper-edge

nj that represents filefj . Hence it also denotes the number
of tasks that shares the filefj . With the assumption that
computation time is linear with the size of the input files,
the estimated execution time of taskti is computed as

ExecTi =
∑

fj∈Fi

filesize(fj)× (Trj +
1

LBW
+ C) (2)

where LBW is the I/O bandwidth from local disk on a
compute node andC is the compute cost of one byte.

By assigning the files sizes as hyper-edge costs, the pro-
posed method reduces the task mapping problem to the
P -way hypergraph partitioning problem according to the
connectivity-1cutsize definition [4]. Each and every file
needed by a task in the batch will be transfered to the com-
pute system at least once. More specifically, if the tasks that
share the filefj is assigned toλj compute nodes, filefj

needs to transferedλj − 1 more times after its first trans-
fer. By using expected execution times as vertex weights,
the algorithm aims to balance computational load across the
compute nodes.

4.2.2 Ordering of Tasks in a Group and Transfer of
Files

Once the tasks are partitioned into groups, the second phase
of the scheduling algorithm is to order tasks in each group
and schedule transfer of files from storage cluster to com-
pute cluster. Two tasks that are in different groups may have
their input files stored on the same set of nodes. Thus, or-
dering of tasks in each group and transfer of files should be
done in a way to minimize end-point contention on the stor-
age cluster. We employ a strategy in which tasks within
a group are scheduled based on their earliest completion
time. The earliest completion time of a task is computed
iteratively and dynamically based on the availability of re-
sources.

The algorithm maintains aGantt chartfor storage nodes.
When a task in a group is scheduled for execution, time slots
are reserved on storage nodes for file transfers required for
this task. These time slots for a task are marked on the
Gantt chart. In calculating the duration of time slots and
marking them on the Gantt chart, we assume that multiple
requests to the same storage node are serialized and that a
compute node can receive a file after it has finished storing
the previously received file on local disk.

The earliest completion time of a taskti is estimated as
the sum of time to stage its input filesFi and its execution
time. The staging time is the time spent to make the input
files ready in the compute node. If all of the input files are
already in the compute node, the staging time will be zero.
Otherwise, it will be the amount of time spent to transfer the
last input file from the storage node. The transfer comple-
tion time for each filefj ∈ Fi (TCTj) is estimated as the
sum of the earliest time a transfer can start (first available
slot in the Gantt chart after the time that the compute node
becomes available) and the actual transfer time (size offj

divided by the storage bandwidth; computed as the mini-
mum of remote disk bandwidth and network bandwidth).
The file fj with the minimumTCTj is picked and tenta-
tively scheduled for transfer.TCT s of the rest of the input
files are recomputed and the next file with the minimum
TCT is picked and tentatively scheduled. This process is

4

Figure 3. An illustration of the execution of
the ordering algorithm on the batch of tasks
shown in Figure 2.

repeated until all of the input files are scheduled.TCT of
the last file scheduled actually gives the staging time. Then
the earliest estimated completion time forti is computed
as the sum of 1) the completion time of file transfers from
storage nodes, 2) I/O time to read the files on local disk,
and 3) CPU time to process the files. The scheduling algo-
rithm determines the task with the least completion time in
each group, and the taskti with the lowestearliest comple-
tion timeout of these is scheduled first. Onceti is sched-
uled, out of the other task groups (excluding the one con-
taining ti), the task with the minimum earliest completion
time (taking into account the current reservations) is now
picked and scheduled. When a running task completes, the
task with earliest completion time from that group is sched-
uled.

Figure 3 illustrates the execution of the ordering algo-
rithm on the batch of tasks shown in Figure 2. In this figure
transfer of each file takes 1 unit of time, and I/O and pro-
cessing of a file takes 0.3 and 0.2 units of time, respectively.
Since task 4 depends on two files, its earliest completion
time is 3. Hence it has been scheduled first and 1 unit of
time on storage node 1 and 1 unit of time on storage node 3
have been reserved. Since a task has been scheduled from
group 2, next the task with the earliest completion time from
group 1 is scheduled. Since all of the tasks in the group de-
pends on 3 files, and they can be scheduled to transfer all of
the files in 3 units, we pick one of them, say task 1. The al-
gorithm continues by reserving the transfer of files for task
1, and another task from group 2 is picked.

5 Experimental Results

We experimentally evaluated the scheduling algorithms
using two application classes, satellite data processing and
biomedical image analysis, described in Section 3. We used

the PaToH toolkit [4] to obtain good quality partitionings of
the hypergraphs generated for the workloads in the experi-
ments. In our experiments, we observed that the hypergraph
partitioning overhead is minimal compared to the execution
time of a batch.

The experiments were carried out on two systems. The
first system is a cluster of Pentium III 933 MHz nodes (OS-
UMED). Each node of this cluster has 300GB disk space
and 512MB of memory. The nodes are connected through
a Switched FastEthernet. In the experiments, a subset of
the nodes were designated as storage nodes, to emulate a
storage cluster coupled to a compute cluster over a network.
The second system (OSC) is a coupled compute and storage
cluster system at the Ohio Supercomputer Center. The com-
pute cluster consists of dual-processor nodes equipped with
2.4 GHz Intel P4 Xeon processors and 4 GB of memory,
62 GB of local scratch space, interconnected by an 8 Gbps
Infiniband Switch. The compute cluster is connected to the
storage system over another Infiniband Switch. The storage
system consists of networked nodes, each of which is con-
nected to an array of IBM FASTt600s over a Fiber Chan-
nel Switch [2]. Each node has a local file system that re-
sides on FASTt600 storage units. For each of the workloads
and hardware systems, we measured throughput (in terms of
MBytes processed per second) for a batch and the amount
of data transferred from storage nodes to compute nodes.

For the satellite data processing application, we used the
emulator developed in [14]. The application (TITAN) [6]
operates on data chunks that are formed by grouping sub-
sets of sensor readings that are close to each other in spa-
tial and temporal dimensions. The emulator allows the user
to generate datasets of varying sizes (corresponding to dif-
ferent numbers of days of sensor readings), the amount of
data acquired per reading, and grouping of data chunks into
files. In our emulation, we assigned one data chunk per
file. A data analysis task specifies the data of interest via
a spatio-temporal window. The corresponding files are re-
trieved from the storage system and processed by the data
analysis task. For the image analysis application, we imple-
mented a program to emulate studies that involve analyses
on images obtained from MRI and CT scans (captured on
multiple days as follow-up studies). A dataset generated
by the emulator is a series of 2D images obtained for a pa-
tient and is associated with metadata describing patient and
study related information (in our case, we used patient id
and study id as the metadata). Each image in a dataset is
associated with an imaging modality and the date of image
acquisition. Each image is stored in a separate file. A data
analysis program can select a subset of images based on a
set of patient ids and study ids, image modality, and a date
range.

We evaluated the system for three different types of
workloads;high overlap, medium overlap, andlow overlap,

5

(a) (b)

Figure 4. Throughput achieved by different algorithms on the (a) OSUMED cluster and (b) OSC cluster,
for the satellite data processing application.

(a) (b)

Figure 5. Throughput achieved by different algorithms on the (a) OSUMED cluster and (b) OSC cluster,
for the biomedical image analysis application.

each of which represents different amounts of file sharing
among tasks in a batch. To generate workload for the satel-
lite data processing application, we have simulated queries
directed to geographically distant parts of the world. 4 sets
of queries with 50 queries in each has been generated repre-
senting the queries directed to 4 hot spot regions. Across the
sets there is no overlap between the queries, and in each set
queries are adjusted such that for high overlap workload,
they resulted in a 85% overlap, on the average, in terms
of files requested by different tasks in the batch. Similarly,
we generated medium and low overlap workloads with 40%
and 10% overlap, respectively. For the image analysis appli-
cation, different degrees of overlap is achieved by varying
the values of patient and time attributes across requests by
different tasks. We generated workloads with 85%, 40%,
and 0% overlap for high, medium, and low overlap cases.

For the experiments, we generated 35 days worth of data,
about 162 GB, for the satellite data processing application.
The data was distributed across 4 storage nodes on each
hardware configuration using a Hilbert-curve based declus-
tering method [7]. Each file in the dataset was 4.5 MB. The
number of tasks in a batch was equal to 200. In the high
overlap case, each task accessed on an average 30 files. In
the medium and low overlap cases, each task accessed on

an average 8 files. For the image analysis application, the
dataset generated by the emulator corresponded to a dataset
of 200 patients and images acquired over several days from
MRI and CT scans. The sizes of images were 1 MB and
16 MB for MRI and CT scans, respectively. The overall
size of the dataset was about 68GB. Each batch comprised
of 200 tasks, and each task accessed 5 MRI scans and 5
CT scans on average in the high, medium, and low overlap
cases. Images for each patient were distributed among 4
storage nodes in a round robin fashion.

In order to create data intensive workloads which are
targeted in this paper and to emulate configurations where
communication and remote I/O costs are relatively expen-
sive, we chose the processing time for each task to be 0.001
seconds per Megabyte of data.

Figures 4 and 5 show the relative performance of the var-
ious scheduling schemes on workloads with different de-
grees of shared I/O among tasks. These experiments were
conducted using 4 compute nodes and 4 storage nodes on
both OSUMED and OSC systems. As is seen from the
figures, the hypergraph based strategy performs better than
the other algorithms for all cases. This is because the hy-
pergraph algorithm is able to cluster tasks that share files
together, thereby reducing the number of times the same

6

(a) (b)

Figure 6. The performance of the scheduling strategies in the medium overlap case in the satellite
data processing application as the number of compute nodes is varied on the OSC system. The
number of storage nodes is equal to 4. (a) Batch execution time. (b) The number of files accessed
remotely from the storage cluster.

file is transferred from the remote storage system. In addi-
tion, while minimizing the networking and I/O overheads,
the hypergraph algorithm maintains computational load bal-
ance across the nodes. The gain due to hypergraph partition-
ing is maximum for the high overlap workload and reduces
as the degree of overlap decreases, as expected. Among
MinMin, MaxMin, SJF, and Sufferage, the Sufferage strat-
egy performs slightly worse than other strategies. However,
on average, MinMin, MaxMin, SJF, and Sufferage achieve
more or less the same throughput irrespective of the type of
workload.

Figure 6 shows how the performance of the various
schemes changes as the number of compute nodes is varied
on the OSC system. In this experiment, the workload for
the high-overlap case in the satellite data processing appli-
cation was used. The number of storage nodes was set to 4.
As is seen from the figure, the hypergraph strategy achieves
better performance than the other strategies in all configura-
tions. An increase in the number of compute nodes allows
for more computational parallelism. However, it also is
likely to increase end-point contention on the storage nodes
hence the performance decrease at 16 compute nodes in all
approaches. We observe that the volume of data transferred
from the storage cluster increases with increasing number
of compute nodes. This is expected since tasks will be dis-
tributed across more nodes when the number of compute
nodes is increased. This will increase the probability that
two tasks that share files will be mapped to different pro-
cessors for execution and, as a result, the number of times
a file is staged from the storage cluster to the compute clus-
ter will increase. As is seen from the figure, the increase
in the number of files transferred from storage nodes is less
with the hypergraph strategy than that in the other strate-
gies, when the number of compute nodes is increased. This
is a result of the fact that sharing of files is explicitly mod-

Figure 7. Contribution of different stages of
the proposed scheduling strategy to through-
put (in MBytes processed per second).

eled and taken into account in the hypergraph strategy for
grouping and mapping of tasks to compute nodes.

Figure 7 quantifies the contribution of each stage of the
hypergraph partitioning algorithm. The experiments were
done on the OSC system with 4 compute and 4 storage
nodes for the high overlap case in both applications.Option
A applies only the first stage (i.e., hypergraph partitioning
of tasks; Section 4.2.1), but no dynamic scheduling of file
transfers is done. That is, when a task is mapped to a proces-
sor, files for that task is transferred without taking into ac-
count storage node loads.Option Bapplies only the second
stage of the algorithm (Section 4.2.2) without hypergraph
partitioning of tasks. The ordering of tasks is applied to the
entire batch and tasks are mapped to idle processors.Com-
binedis the hypergraph based scheduling strategy applying
both stages. We observe that Option A does not perform as
well as Option B and the combined approach. This is be-
cause, minimizing the edge-cut weight may not ensure that
there is no file system contention (as different files can map
to the same file system or storage node). Option B improves

7

the performance compared to Option A in the satellite data
processing application, but the performance improvement
in the image analysis application is small. The best per-
formance is obtained by the combined approach. The im-
provement in using the combined approach over Option B is
more in the case of image analysis workload than the satel-
lite data processing workload, since the image analysis files
are larger (16 MB) in comparison to titan files (4.5 MB).
In that case, the grouping and mapping of tasks to compute
nodes taking into account sharing of files is more beneficial.
A result of our experiments is that both grouping and map-
ping of tasks to compute nodes and ordering of tasks and
scheduling of file transfers should be considered in tandem
to obtain the best performance.

6 Conclusions

We presented and experimentally evaluated a new, hy-
pergraph based strategy for scheduling a batch of tasks with
batch shared I/O behaviour on systems with coupled storage
and compute clusters. The proposed scheme aims to min-
imize the volume of remote data transfers and contention
on storage nodes, while maintaining a balanced distribution
of computational load across compute nodes. The salient
features of this algorithm are that 1) it formulates the shar-
ing of files among tasks as a hypergraph and uses hyper-
graph partitioning to map tasks to processors and 2) em-
ploys a dynamic task ordering and file transfer scheme to
efficiently stage files from storage nodes to compute nodes.
Our experimental results shows that our strategy achieves
better performance compared to Shortest Job First, Min-
Min, MaxMin, and Sufferage strategies.

References

[1] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Schedul-
ing multiple data visualization query workloads on a shared
memory machine. InProceedings of the 2002 IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS 2002), Fort Lauderdale, FL, April 2002.

[2] S. Bokhari, B. Rutt, P. Wyckoff, and P. Buerger. An evalua-
tion of the osc fastt600 turbo storage pool. Technical Report
OSUBMI TR 2004n02, The Ohio State University, Depart-
ment of Biomedical Informatics, Sep 2004.

[3] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
AppLeS parameter sweep template: User-level middleware
for the grid. InProceedings of the 2000 ACM/IEEE SC00
Conference, pages 75–76, 2000.

[4] U. V. Çatalÿurek and C. Aykanat. Hypergraph-partitioning
based decomposition for parallel sparse-matrix vector mul-
tiplication. IEEE Transactions on Parallel and Distributed
Systems, 10(7):673–693, 1999.

[5] C. Chang, T. Kurc, A. Sussman, U. Catalyurek, and J. Saltz.
A hypergraph-based workload partitioning strategy for par-
allel data aggregation. InProceedings of the Eleventh SIAM
Conference on Parallel Processing for Scientific Computing.
SIAM, Mar. 2001.

[6] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman,
and J. Saltz. Titan: A high performance remote-sensing
database. InProceedings of the 1997 International Confer-
ence on Data Engineering, pages 375–384. IEEE Computer
Society Press, Apr. 1997.

[7] C. Faloutsos and S. Roseman. Fractals for secondary key
retrieval. Inthe 8th ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, Philadelphia, PA,
Mar. 1989.

[8] O. Ibarra and C. Kim. Heuristic algorithms for scheduling
independent tasks on nonindentical processors.Journal of
the ACM, 24(2):280–289, Apr 1977.

[9] R. Jain, K. Somalwar, J. Werth, and J. Browne. Heuristics
for scheduling i/o operations.IEEE Transactions on Parallel
and Distributed Systems, 8(3):310–320, Mar 1997.

[10] M. Mehta, V. Soloviev, and D. J. DeWitt. Batch scheduling
in parallel database systems. InProceedings of the 9th In-
ternational Conference on Data Engineering (ICDE 1993),
Vienna, Austria, 1993.

[11] K. Ranganathan and I. Foster. Decoupling computation
and data scheduling in distributed data-intensive applica-
tions. InProceedings of the Eleventh IEEE Symposium on
High Performance Distributed Computing (HPDC), Edin-
burgh,Scotland, July 2002.

[12] V. Sarkar. Determining average program execution times and
their variance. InProceedings of the ACM SIGPLAN ’89
Conference on Programming Language Design and Imple-
mentation, pages 298–312. ACM Press, June 1989.

[13] D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
and M. Livny. Pipeline and batch sharing in grid workloads.
In Proceedings of High-Performance Distributed Comput-
ing (HPDC-12), pages 152–161, Seattle, Washington, June
2003.

[14] M. Uysal, T. M. Kurc, A. Sussman, and J. Saltz. A per-
formance prediction framework for data intensive applica-
tions on large scale parallel machines. InProceedings of
the Fourth Workshop on Languages, Compilers and Run-
time Systems for Scalable Computers, number 1511 in Lec-
ture Notes in Computer Science, pages 243–258. Springer-
Verlag, May 1998.

[15] N. Vydyanathan, G. Khanna, T. Kurc, U. Catalyurek,
P. Wyckoff, J. Saltz, and P. Sadayappan. Use of pvfs for
efficient execution of jobs with pipeline-shared i/o. InPro-
ceedings of the 5th IEEE/ACM International Workshop on
Grid Computing (Grid 2004), 2004. to appear.

[16] S. Yang, D. Gannon, S. Srinivas, and F. Bodin. High Per-
formance Fortran interface to the Parallel C++. InProceed-
ings of the Scalable High Performance Computing Confer-
ence (SHPCC-94), pages 301–308. IEEE Computer Society
Press, May 1994.

8

