
Fast and Scalable Barrier using RDMA and Multicast Mechanisms for
InfiniBand-Based Clusters

�

S. P. Kini J. Liu J. Wu P. Wyckoff
�

D. K. Panda
Computer and Info. Science
The Ohio State University

Columbus, OH 43210�
kinis,liuj,wuj,panda � @cis.ohio-state.edu

�
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, OH 43212

pw@osc.edu

Abstract

This paper describes a methodology for efficiently
implementing the collective operations, in this case the
barrier, on clusters with the emerging InfiniBand Ar-
chitecture (IBA). IBA provides hardware level support
for the Remote Direct Memory Access (RDMA) message
passing model as well as the multicast operation. Ex-
ploiting these features of InfiniBand to efficiently imple-
ment the barrier operation is a challenge in itself. This
paper describes the design, implementation and eval-
uation of three barrier algorithms that leverage these
mechanisms. Performance evaluation studies indicate
that considerable benefits can be achieved using these
mechanisms compared to the traditional implementation
based on the point-to-point message passing model. Our
experimental results show a performance benefit of up to
1.29 times for a 16-node barrier and up to 1.71 times for
non-powers-of-2 group size barriers. Each proposed al-
gorithm performs the best for certain ranges of group
sizes and the optimal algorithm can be chosen based
on this range. To the best of our knowledge, this is the
first attempt to characterize the multicast performance
in IBA and to demonstrate the benefits achieved by com-
bining it with RDMA operations for efficient implemen-
tations of barrier.

1 Introduction

The barrier operation [15] is a commonly used col-
lective operation in parallel applications that are devel-
oped using the Message Passing Interface (MPI) [11]
programming model. Barriers are used for synchroniz-
ing the parallel processes and involve no transfer of data.
They maybe used to separate phases of an application
program. The MPI Barrier function call is invoked by
all the processes in a group. This call blocks a process
until all the other members in the group have invoked
it. An efficient implementation of the barrier is essen-
tial because it is a blocking call and no computation can
be performed in parallel with this call. Faster barriers
improve the parallel speedup of applications and helps
in scalability. Therefore it is important to minimize the
time spent waiting on barriers.

�
This research is supported in part by Sandia National Labora-

tory’s contract #30505, Department of Energy’s Grant #DE-FC02-
01ER25506, and National Science Foundation’s grants #EIA-9986052
and #CCR-0204429.

The fast improving performance of the modern day
interconnects has led to the shift in communication bot-
tleneck from the network fabric to the software layer at
the sending and receiving ends. Hence it is vital that
the software developers make the best use of the prim-
itives offered by the interconnects and implement the
messaging layers with minimal overheads. Communi-
cation protocols such as AM [20], LAPI [3], EMP [12],
VIA [2] have made user-level transfer of data possible
without the need for kernel context switches and mul-
tiple data copies. These user level protocols provide a
send/receive model of communication which calls for
posting of descriptors at the sender and receiver ends.
Recent technologies like VIA and InfiniBand Architec-
ture [5] also offer a different model based on memory
semantics. They allow transfer of data directly between
user level buffers on remote nodes without the active
participation of either the sender or the receiver. This
method of operation is called Remote Direct Memory
Access (RDMA). RDMA allows a process to directly
access a remote process’ user buffer without the remote
process making an explicit function call. There needs
to be some initial address exchange done between pro-
cesses on the endnodes. After this initial handshake, the
sends are transparent to the receiver and there is no post-
ing of receive descriptors being done in the critical path.

In the earlier generation MPP and SMP systems, col-
lective operations were achieved by using special hard-
ware support. Today parallel systems are increasingly
being built out of affordable commodity workstations
and interconnects. These current generation clusters use
software based collective operations based on point-to-
point communication. In current generation clusters the
MPI collective operations are implemented using algo-
rithms that use the MPI point-to-point communication
calls. When an operation like barrier is executed the
nodes make explicit send and receive calls. The receive
operation is generally an expensive operation since it
involves posting a descriptor for the message. Also, if
the message arrives before the receive call is made, it is
placed in a temporary buffer. The receive function then
has to search the unexpected queue for the message and
when found the data is copied into the user buffer. All
this processing adds considerable overhead to the basic
send-receive latency, thereby making the entire barrier
operation slower. This is the kind of overhead that can
be effectively eliminated using RDMA operations.

Another attractive feature in the IBA networks is the
support for hardware-based multicast. This primitive is

1

provided under the Unreliable Datagram (UD) transport
mode. IBA allows processes to attach to a multicast
group and then the message sent to the group will be
delivered to all the processes in the group. This means
that a single descriptor needs to be posted in order to
perform a collective operation.

Given these powerful and efficient features in IBA
we are faced with the interesting question of whether
these remote memory data transfer and multicast sup-
port in IBA clusters can be made use of for optimizing
the performance of collective operations. While most
earlier work focused on optimizing collective operation
based on the Send/Recv model, Gupta et al [14] pro-
posed an RDMA based algorithm for VIA-based clus-
ters. The performance characteristics of IBA networks
and the added features lead us to rethink the way in
which barriers are currently implemented.

In this paper, we aim to provide answers to the fol-
lowing two questions:

1. Can we optimize the MPI collective operations
by using algorithms that leverage the RDMA primitives
in IBA instead of algorithms that use the existing MPI
point-to-point operations?

2. Can the multicast primitives in IBA be used to im-
plement scalable collective communication operations?

The paper shows that replacing the point-to-point
communication calls in the collective operations with
faster lower-level operations can provide significant per-
formance gains. Performance improvement is possible
due to various reasons. Primarily, the number of data
copies is reduced by avoiding point-to-point messaging
protocols. Also, software overheads like tag matching
and unexpected message handling are eliminated. The
hardware multicast feature fits in well with the seman-
tics of collective operations and hence can be utilised to
our advantage.

We propose three algorithms that utilize these fea-
tures in IBA. These algorithms were implemented and
integrated into the MVAPICH [7] implementation of
MPI over IBA, and we discuss the design and imple-
mentation issues. We also present the results of our
performance evaluations on two different clusters, and
show that considerable benefits are achieved using the
proposed techniques.

The rest of the paper is organized as follows: Section
2 gives an overview of IBA, and MVAPICH. In Section
3 we describe the prposed algorithms. Section 4 dis-
cusses the issues involved in design and in Section 5 we
describe the details of the implementation. Section 6
presents the experimental results. We mention some re-
lated work in Section 7 and conclude in Section 8.

2 Overview of IBA and MVAPICH
In this section we provide an overview of InfiniBand

Architecture and the set of features that can be utilized
for the efficient implementation of point-to-point and
collective message passing operations. We also provide
a brief overview of the MVAPICH message passing li-
brary.

2.1 InfiniBand Architecture

InfiniBand Architecture [5] is emerging as the next
generation interconnect for I/O and inter-process com-
munication. This industry standard uses scalable

switched serial links to design clusters and servers of-
fering high bandwidth and low latency. IBA makes use
of kernel-bypass techniques to offer zero-processor copy
data transfers between user level processes on remote
nodes. In an InfiniBand network, nodes are connected
to the IBA fabric using Channel Adapters (CA). Host
Channel Adapters (HCA) are installed into the process-
ing nodes and initiate communication within the fabric.
Target Channel Adapters (TCA) connect I/O nodes to
the fabric.

IBA defines a semantic interface called Verbs to con-
figure, manage and operate a HCA. VAPI is the Verbs
implementation provided by Mellanox Technologies [9]
for the HCAs. It supports two kinds of communication
semantics: channel semantics and memory semantics.
In channel semantics, send/receive operations are used
for communication. In memory semantics, remote direct
memory access operations (RDMA write and RDMA
read) are used. Currently, two types of transport ser-
vices, Reliable Connection (RC) and Unreliable Data-
gram (UD) are implemented by InfiniHost. In order to
communicate, each process creates a Queue Pair (QP)
which consists of a Send Queue and a Receive Queue.
The transport service needed has to be specified when
the QPs are created. Communication requests are initi-
ated by posting Work Queue Requests (or descriptors)
to the work queues. The HCA executes these work
requests in the order that they are placed in the work
queue. When the HCA completes a request it places
a Completion Queue Entry (CQE) in the Completion
Queue (CQ). The processes can then poll on the CQs
to check for completion of the requests. User buffers
used for transferring data must be registered first before
they can be used for communication.

Addressing of the destination endpoints is deter-
mined based on the QP service type. For RC QPs, the
destination address is specified when the QP is created.
For UD QPs, the destination address of the node is con-
tained in the address handle which is submitted in the
work request.

Some of the IBA features that are of interest in the
message passing context are described below.

2.1.1 RDMA Read
This is a memory semantic operation that allows a pro-
cess to read a virtually contiguous buffer on a remote
node and write to a local memory buffer. RDMA ser-
vice is available only on the RC transport mode.

2.1.2 RDMA Write
This memory semantic operation allows a process to
write to a virtually contiguous buffer on a remote node.
This is a one-sided operation that does not incur a soft-
ware overhead at the remote side There is also a gather
list available to send data from non-contiguous local
buffers. Figure 1 shows the difference in latencies be-
tween the Send/Receive and RDMA write operations as
measured on Cluster 1, described in Section 6. We see
that the performance of RDMA write is much better than
that of a Send/Receive operation and hence it would be
beneficial to use this primitive for our purposes.

2.1.3 Multicast
Multicast is the ability to send a single message to a spe-
cific address and have it delivered to multiple processes

2

5

6

7

8

9

10

11

12

13

4 8 16 32 64 128 256 512 1024 2048

Tim
e (

µs
ec

)

Message Size (bytes)

Send/Recv
RDMA Write

Figure 1. Comparison of RDMA write la-
tency with Send/Recv latency at the VAPI
layer (Cluster 1)

which may be on different endnodes. This feature is im-
plemented in the IB switch which replicates the multi-
cast message and sends it to all the designated receivers.
Performance evaluations of this multicast primitive on
the InfiniScale switch show that it takes about 9.6 � s to
send a 1-byte message to 1 node and 9.8 � s to send the
message to 7 nodes. This shows that the operation is
very scalable and can be used effectively to design scal-
able collective operations. The multicast facility is avail-
able only with the UD service type. The UD service is
connectionless and unacknowledged. It allows the con-
sumer of the QP to communicate with any UD QP on
any node, and thus greatly improves the scalability of
IBA. Current version of VAPI supports a single multi-
cast group that includes all the nodes in the subnet. We
have made use of this “broadcast” primitive for our im-
plementation. When the later versions of VAPI provide
support for attaching to different multicast groups it will
be possible to design new algorithms where messages
are sent only to a select group of processes.

2.2 Message Passing Interface

Message Passing Interface (MPI) is a standard library
specification for message passing in parallel applica-
tions. It defines operations for both point-to-point and
collective communication. MPICH [4] from Argonne
National Laboratory is a popular open source implemen-
tation of the MPI standard. At the core of the MPICH
design is a small set of functions that form the Ab-
stract Device Interface (ADI) [16]. The ADI allows easy
porting of MPICH to various interconnect technologies.
MVICH [6] from Lawrence Berkeley National Labora-
tory is one such implementation of ADI2 for VIA based
clusters. MVAPICH [7] is the implementation of ADI2
for the VAPI interface of the InfiniHost HCAs and is de-
rived from MVICH. Our barrier design, implementation
and evaluations in this paper have been done using the
MVAPICH 0.8.5 code base.

3 Proposed Barrier Algorithms
In this section we describe the three algorithms that

we have designed and implemented for the barrier op-
eration. The aim is to leverage the fastest protocols
(RDMA and multicast) offered by IBA to the fullest ex-
tent possible. In the following subsections we denote
processes using symbols � , � , � and the total number of
processes involved in the barrier is denoted by � . We
refer to the process that has a distinguished role to play
in some algorithms as the root. We indicate the number
of the current barrier by the symbol barrier id.

3.1 RDMA-based Pairwise Exchange (RPE)

The algorithm for the barrier operation in the MPICH
distribution is called the Pairwise Exchange (PE) re-
cursive doubling algorithm. MPICH makes use of the
MPI Send and MPI Recv calls for the implementation
of this algorithm. This is a recursive algorithm where
the nodes are paired up and each node does a send and
receive with its partner. If the number of nodes perform-
ing the barrier is a power of two, then every process
in this algorithm makes ���	��
�� sends and receives, and
thus takes �
���
 � steps. If � is not a power of two, then
the algorithm takes �����	�
 ������� steps. Figure 2 shows
the steps performed for a 8 node barrier.

0 1 2 3 4 5 6 7 Step 1

Step 2
Step 3

Figure 2. Pairwise Exchange Algorithm

Now we describe how this algorithm can be per-
formed using the RDMA Write primitive. The barrier
is a collective call, and so each process keeps a running
count of the current barrier number, barrierid. Each pro-
cess has an array of bytes of length � . In each step of
the PE, process � writes the barrierid in the ����� position
of the array of the partner process � . It then waits for the
barrierid to appear in the ����� position of its own array.
Since each process is directly polling on memory for the
reception of data, it avoids the overhead of posting de-
scriptors and copying of data from temporary buffers, as
is the case when the MPI Recv call is used.

Figure 3 gives a pictorial representation of this algo-
rithm. Here � is 4, and the processes are called P0, P1,
P2, and P3. In the first step P0 does an RDMA write
of barrierid, in this case 1, to index 0 of P1’s array and
waits for P1 to write in index 1 of its own array. In the
second step it performs the same operations with P2.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 30 1 2 30 1 2 3 0 1 2 3

P3P2P1P0

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

P0 P1 P2 P3

−1 1 −1 1 −1 −1 −1 −1 1 −1 1 −1

Step 1

Step 2

11 1 1

1111

Figure 3. Steps performed in RPE for a 4-
node barrier

3.2 RDMA-based Dissemination (RDS)

In this Dissemination Barrier algorithm as described
in [10], the synchronization is not done pairwise as in the
previous algorithm. In round � , process � sends a mes-
sage to process � = �������	 "!#�%$'&(� . It then waits for a
message from the process � = ���'�)�+*,�	 -!#�%$'&(� . This

3

algorithm takes � �
���
 ��� steps at each process, irrespec-
tive of whether there are power of two or non-power of
two number of nodes and thus is a more efficient pattern
of synchronizations.

The barrier signaling operations using RDMA write
are done exactly as in the RPE algorithm, and this al-
gorithm only varies in way in which the processes are
grouped for communication in each step.

The Figure 4 shows the communication in the various
steps of this algorithm for a barrier on 5 nodes.

0 0 0

1 1 1

2223 3 3

444

Step 1 Step 2 Step 3

Figure 4. Dissemination Algorithm

3.3 RDMA-based Gather and Multicast
(RGM)

In this scheme, the barrier operation is divided into
two phases. In the first phase called the gather, every
node indicates its arrival at the barrier by sending a mes-
sage to a special process, root. This process of gather
can be done in a hierarchical fashion by imposing a log-
ical tree structure on the processes. Once root has re-
ceived the messages from all its children, it enters the
multicast phase. In this phase root broadcasts a message
to all the nodes to signal that they can now exit the bar-
rier.

In this two-step technique we use RDMA writes in
the gather phase. The processes are arranged in a tree
structure. Each process has an array of bytes on which
it polls for messages from its children. Once it receives
messages from all its children, the process forwards the
message to its parent.

When root receives all the RDMA messages, it does
a hardware multicast to all the processes. The multicast
message contains the barrierid. This phase is a one step
process, since the multicast primitive is such that the sin-
gle message gets sent to all the members of the multicast
group.

Let us assume that the gather phase is done with a
maximum fan-in of � . The value of � is chosen to be a
��� $��	��
'$
��� *�� ! value, and ����� . So the number of lev-
els in the tree created in this phase will be � �
������������� ,
and this is the number of hops done by the barrier sig-
nal to reach root. In the multicast phase just one step is
taken by the root to signal completion of the barrier to
all nodes.

Figure 5 shows how this algorithm works for a barrier
on 8 processes. Here the gather is done using a 2 stage
tree with the value of � as 3. Process 0 is root. The value
for � can be chosen based on the number of nodes and
the performance of the RDMA write operation.

4 Design Issues
We now discuss the intrinsic issues associated with

the design and implementation of the proposed algo-
rithms. We discuss the buffer management and data
reception issues to be handled when using RDMA. We

0 1 2 3 4 5 6 7 Multicast Step 3

Gather Step 2

Gather Step 1

Figure 5. Gather and Multicast Algorithm

also discuss the techniques to add reliability for the UD
multicast. In this section we present different alterna-
tives for each of these issues. In the next section, we
focus on our choices and their implementations.

4.1 Buffer Management

IBA specification requires that all the data transfer be
done only between buffers that are registered. Imple-
menting collective operations on top of point-to-point
message passing calls leads us to rely on the internal
buffer management and data transfer schemes which
might not always be optimal in the collective operations
context. In using RDMA, we have better control of the
buffer consumption patterns. In order to use the RDMA
method of data transfer, each node is required to pin
some buffers and send/receive data using them. Also,
the remote nodes should be aware of the local buffer
address and memory handle, which means that a hand-
shake for the address exchange should be done. The al-
location and registration can be done at various stages
during the life of the MPI application. The first option
is for each process to allocate a set of buffers for the
barrier operation and exchange the addresses during the
initialization phase(i.e, as a part of MPI Init). The dis-
advantage of this approach is that the buffers will be al-
located and pinned even if the application is not making
any barrier call.

The second option is for the buffers to be registered
during the first barrier call. This means that the buffers
are allocated only when needed. However, buffer reg-
istration is an expensive process and therefore the first
barrier call is bound to take more time.

Another alternative is to allow dynamic allocation
and registration of buffers during every barrier call. But
this calls for an address exchange operation during each
barrier call.

4.2 Data Reception

The RDMA write operation is transparent at the re-
ceiving end and hence the receiver is not aware of the
arrival of data . We need a mechanism to notify the re-
ceiver of the completion of the RDMA write.

One method is to make use of the RDMA with imme-
diate data feature. This operation consumes a descriptor
at the remote end and hence deprives us of the trans-
parency benefit of the RDMA write .

The other method is for the receiver to poll on the
buffers for arrival of data. This means that when the
buffers are allocated, they will need to be initialized with
some special data so that the data arrival can be recog-
nized.

4

4.3 Adding reliability for unreliable multicast
operations

The MPI specification assumes that the underlying
communication interface is reliable and that the user
need not cope with communication failures. Since the
multicast operation in IBA is unreliable, reliability has
to be handled in our design.

One alternative is to provide an acknowledgment
(ACK) message from the processes after every multi-
cast message is received. The sending process waits for
the ACKs from all the nodes and retransmits otherwise.
This technique is very expensive since there is a message
being sent back from every process to the root, even after
the barrier is logically completed.

Another technique would be for each receiving pro-
cess to maintain a timer and send a negative acknowl-
edgment (NAK) when it has not received a message.
This NAK could be sent using the Send/Recv primitives.
When the root process receives this message, it can re-
transmit the multicast message. However, this means
that the application should make some MPI communica-
tion call in order for the root node to receive the packet
and make progress.

The IB specification allows for event handlers to
be called when a completion queue entry is generated.
There is the option of triggering these event handlers on
the receive side only if the “solicit” flag is set in the mes-
sage by the sender. This facility can be used in the NAK
message. By setting the solicit flag, this message trig-
gers the event handler at the
'$'$�� , which then does a
retransmission of the multicast message.

5 Implementation Details
We now describe the design decisions made and the

implementation details for the three algorithms.

5.1 Buffer Management and Address Ex-
change

Since the barrier is a collective call, during the first
MPI Barrier call, all the processes allocate memory for
the barrier. The size of the memory allocated is the same
as the size of the communicator. Each element in this al-
located array will be written by the corresponding pro-
cess using an RDMA write call. Since every process in
the communicator is identified by a rank the array ele-
ments can be indexed using this rank value.

In order to perform an RDMA write, a process needs
to provide the remote memory’s virtual address and the
memory handle that is obtained after the registration of
the memory. After the allocation of the buffers, the
nodes exchange these addresses and memory handles.
This address exchange happens using the send and re-
ceive primitives.

This design option seems to be the best among the
ones mentioned in Section 4, since it ensures that the
memory is registered only if the application is involved
in collective operations. The overhead is also not in-
creased since the time for address exchange will always
be spent, either during the initialization phase, or in the
first barrier as is done currently. Once the buffers are
allocated, they can be used for all the barriers executed
during the life of the process.

5.2 Data validation at the receiving end

There is a static count called the ����
�
 � ��
 � & that is
maintained by each process. This value is always pos-
itive. So during the initialization we assign a negative
value to all the array elements. When a process needs a
message from a remote process, it polls the correspond-
ing array element. It waits for the value to be greater
than or equal to the current ����
�
 � ��
 � & . This is needed to
handle cases with consecutive barriers. If one process is
faster than the other, it will enter the second barrier be-
fore the other can exit the first one. Thus it will write the
larger barrier number in the array. This design alterna-
tive seems to give the best performance among all those
mentioned in Section 4.

5.3 Handling UD multicast messages along
with the RC messages

In the broadcast phase of the RGM algorithm we
make use of the multicast feature which uses UD pack-
ets. This requires that every process create a QP for the
UD service type. This is done during MPI Init. The
address of the QPs is also exchanged among all the pro-
cesses. The QP of each process is also attached to the
global multicast group in order to enable it to receive
messages sent to the multicast group.

In the IB specification the UD messages have the
initial 40 bytes assigned for the Global Route Header
(GRH). If the RC and UD completions are sent to the
same CQ, it will be difficult to distinguish between RC
and UD messages based on the data content because we
don’t know where the actual data starts. Hence we create
a separate CQ for the UD work request completions.

5.4 Reliability

Once a process sends the barrier message to its par-
ent in the gather phase, it begins to wait for the multi-
cast message from the root. We impose a timeout on
this phase, and send a NAK to the root if no message
is received within the time period specified. The NAK
message is sent using the Send primitive and it contains
the “solicit” flag set to true. The NAK message also con-
tains the ����
�
 � ��
 � & that the process is currently waiting
to complete.

When the NAK message arrives at the root, it trig-
gers the registered completion event handler. The root
then checks if the message is valid retransmit request by
looking at the barrier number. It then does a retransmit
of the multicast message for that barrier number.

We have seen in our clusters that the rate of dropping
UD packets is very low, and hence this reliability feature
is not called upon often. Also, since IBA allows us to
specify service levels to QPs, we could assign high pri-
ority service levels to the UD QPs. Thus the chances of
these messages getting dropped is reduced even further.
We also see that in the normal scenarios where there are
no packets dropped, there is no overhead imposed by the
reliability component.

6 Performance Evaluation
We conducted our performance evaluations on the

following set of clusters.

5

Cluster 1 : A cluster of 8 SuperMicro SUPER P4DL6
nodes, each with dual Intel Xeon 2.4GHz processors,
512MB memory, PCI-X 64-bit 133MHz bus, and con-
nected to a Mellanox InfiniHost MT23108 DualPort 4x
HCA. The nodes are connected using the Mellanox In-
finiScale MT43132 eight 4x port switch. The Linux ker-
nel version is 2.4.7-10smp. The InfiniHost SDK version
is 0.1.2 and the HCA firmware version is 1.17.

Cluster 2 : A cluster of 16 Microway nodes, each with
dual Intel Xeon 2.4GHz processors, 2GB memory, PCI-
X 64-bit 133MHz bus, and connected to a Topspin [17]
InfiniBand 4x HCA [18]. The HCAs are connected to
the Topspin 360 Switched Computing System, which is
a 24 port 4x InfiniBand switch with the ability to include
up to 12 gateway cards in the chassis. The Linux kernel
version is 2.4.18-10smp. The HCA SDK version is 0.1.2
and firmware version is 1.17.

The barrier latency was obtained by executing
MPI Barrier 1000 times and the average of the latencies
across all the nodes was calculated.

Figure 7 and 8 show the performance comparisons of
the three proposed barrier algorithms with MPI-PE, the
standard pairwise exchange MPICH implementaion of
the barrier. On the left-hand side we show the absolute
values of the barrier latency and on the right-hand side
we show the factors of improvement.

In Figure 7(a) and 7(c), we see that RPE and RDS
perform better than MPI-PE. For group sizes of 2 and
4, RGM does worse because the base latency of the
UD multicast operation is greater than that of a single
RDMA write. The performance of RPE and RDS for
powers-of-2 group sizes is very similar. For 8 nodes
in Cluster 1, we gain as much as 1.25 factor of im-
provement with RPE and 1.27 with RDS, as seen in Fig-
ure 7(b). Figure 7(d) shows that in Cluster 2, RGM does
the best for 16 nodes with an improvement of 1.29. This
is because for larger group sizes, RGM has the benefit
of the constant time multicast phase.

Figure 8 illustrates the performance gains obtained
for all group sizes. We see that the pairwise exchange
algorithms, MPI-PE and RPE, always penalize the non-
power-of-2 cases, and this is not seen in RDS and RGM.
Hence on Cluster 1, RDS and RGM gain a performance
improvement of up to 1.64 and 1.71 respectively. On
Cluster 2, we see that RGM performs best in most cases
and the maximum factor of improvement seen is 1.59.
We see that the factor of improvement for RPE is almost
a constant in all cases because the benefit is obtained by
the constant difference in the latency between a point-to-
point send/receive operation and an RDMA-Write/poll
operation.

The performance of the RGM algorithm varies with
the values for maximum fan-in in the gather phase. As
this value decreases, the height of the tree increases and
this will increase the number of RDMA writes being
done. But if this value is large, the parent node becomes
a hot-spot, that could possibly cause degradation in per-
formance. Hence we need to choose the optimal value
for the fan-in. From Figure 6, we see that the fan-in
value of 7 performs the best. Hence for all our perfor-
mance evaluations we choose this value in the RGM im-
plementation.

As mentioned earlier, the pairwise exchange algo-
rithm does badly for non-power-of-2 group sizes be-
cause of 2 extra operations. Hence in order to do a fair

16

18

20

22

24

26

28

30

2 4 6 8 10 12 14 16

Ti
m

e
(µs

ec
)

Number of Nodes

Fan-in 3
Fan-in 7

Figure 6. Performance of RGM algorithm
for varying fan-in values on Cluster 2

comparison, we implemented the Dissemination algo-
rithm with the point-to-point MPI functions. We refer
to this as MPI-DS. The barrier latencies of the proposed
algorithms are better than that of MPI-DS too. Figure 9
shows the comparison of the RDS and RGM implemen-
tations with MPI-DS. It is to be noted that inspite of pro-
viding benefits to the current MPI implementation, RDS
achieves up to 1.36 factor of improvement, and RGM
achieves 1.46 on Cluster 1. We see an improvement of
1.32 with RDS and 1.48 with RGM on Cluster 2.

7 Related Work
The benefits of using RDMA for point-to-point mes-

sage passing operations for IBA clusters has been de-
scribed in [8]. The methods and issues involved in
implementing point-to-point operations over one-sided
communication protocols in LAPI are presented in [1].
However using these optimized point-to-point opera-
tions does not eliminate the data copy, buffering and tag
matching overheads. A lot of research has taken place
in the past to design and develop optimal algorithms for
collective operations on various networks using point-
to-point primitives, but not much work has been done on
selection of the communication primitives themselves.

RDMA based design of collective operations for VIA
based clusters [13, 14] has been studied earlier. Com-
bining remote memory and intra-node shared memory
for efficient collective operations on IBM SP has been
presented in [19]. None of these papers focus on tak-
ing advantage of novel mechanisms in IBA to develop
efficient collective operations.

8 Conclusions and Future Work
In this paper, we have presented three new ap-

proaches (RPE, RDS, and RGM) to efficiently imple-
ment the barrier operation on IBA-based clusters while
taking advantage of the RDMA and multicast function-
alities of IBA. The experimental results we achieved
on 8 and 16 node clusters show that the proposed ap-
proaches significantly outperform the current barrier im-
plementations in MPI that use point-to-point messaging.
The RGM scheme tends to perform well for larger group
sizes, while RPE and RDS perform better for smaller
groups. The results also show that the schemes are scal-
able with system size and will provide better benefits for
larger clusters. Therefore we arrive at the conclusion
that the efficiency of the barrier operations can be con-
siderably improved compared to the traditional point-to-
point messaging calls based implementations by using
the novel mechanisms of IBA.

6

6

8

10

12

14

16

18

20

22

24

26

2 3 4 5 6 7 8

Ti
m

e
(µ

se
c)

Number of Nodes

MPI-PE
RPE
RDS
RGM

(a) Latency (Cluster 1)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

2 3 4 5 6 7 8

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Number of Nodes

RPE
RDS

RGM

(b) Factor of Improvement (Cluster 1)

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16

Ti
m

e
(µ

se
c)

Number of Nodes

MPI-PE
RPE
RDS
RGM

(c) Latency (Cluster 2)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

2 4 6 8 10 12 14 16
Fa

ct
or

 o
f I

m
pr

ov
em

en
t

Number of Nodes

RPE
RDS
RGM

(d) Factor of Improvement (Cluster 2)

Figure 7. Comparison of MPI-PE with the proposed algorithms for power-of-2 group size on
Clusters 1 and 2

5

10

15

20

25

30

35

2 3 4 5 6 7 8

Ti
m

e
(µ

se
c)

Number of Nodes

MPI-PE
RPE
RDS
RGM

(a) Latency (Cluster 1)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 3 4 5 6 7 8

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Number of Nodes

RPE
RDS

RGM

(b) Factor of Improvement (Cluster 1)

5

10

15

20

25

30

35

40

45

2 4 6 8 10 12 14 16

Ti
m

e
(µ

se
c)

Number of Nodes

MPI-PE
RPE
RDS
RGM

(c) Latency (Cluster 2)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 6 8 10 12 14 16

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Number of Nodes

RPE
RDS
RGM

(d) Factor of Improvement (Cluster 2)

Figure 8. Comparison of MPI-PE with the proposed algorithms for all group sizes on Clusters 1
and 2

7

6

8

10

12

14

16

18

20

22

24

26

2 3 4 5 6 7 8

Ti
m

e
(µ

se
c)

Number of Nodes

MPI-DS
RDS
RGM

(a) Latency (Cluster 1)

0.4

0.6

0.8

1

1.2

1.4

1.6

2 3 4 5 6 7 8

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Number of Nodes

RDS
RGM

(b) Factor of Improvement (Cluster 1)

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16

Ti
m

e
(µ

se
c)

Number of Nodes

MPI-DS
RDS
RGM

(c) Latency (Cluster 2)

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 6 8 10 12 14 16

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Number of Nodes

RDS
RGM

(d) Factor of Improvement (Cluster 2)

Figure 9. Comparison of MPI-DS with the proposed algorithms on Clusters 1 and 2

This paper concentrated on the barrier operation. We
are also working on extending these ideas to implement
other collective operations like broadcast and allreduce.
We expect the challenges and scope for improvement to
be greater in these cases because of the data transfer in-
volved in these operations. We are also planning to use
the other features of IBA, like support for atomic and
RDMA read operations to implement the collective op-
erations efficiently.

Acknowledgments

We would like to thank Kevin Deierling, Jeff Kirk,
and Ezra Silvera from Mellanox Technologies for their
support with the InfiniBand hardware and software. We
would also like to thank Ben Eiref, Robert Starmer, and
Lorne Boden from Topspin Communications for all their
efforts in providing us access to their 16 node InfiniBand
cluster. We would like to thank Rinku Gupta, Amith
Rajith Mamidala, Pavan Balaji and Balasubramaniam
Chandrasekaran for their help and valuable suggestions.

References
[1] Mohammad Banikazemi, Rama K. Govindaraju, Robert Black-

more, and Dhabaleswar K. Panda. MPI-LAPI: An Efficeint Im-
plementation of MPI for IBM RS/6000 SP Systems. IEEE TPDS,
pages 1081–1093, October 2001.

[2] Compaq, Intel, and Microsoft. VI Architecture Specification
V1.0, December 1997.

[3] G. H. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R. K.
Govindaraju, K. Gildea, P. DiNicola, and C. Bender. Perfor-
mance and Experience with LAPI: A New High Performance
Communication Library for the IBM RS/6000 SP. IPPS ’98,
March 1998.

[4] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjel-
lum. High-performance, portable implementation of the MPI
Message Passing Interface Standard. Parallel Computing,
22(6):789–828, 1996.

[5] InfiniBand Trade Association. InfiniBand Architecture Specifi-
cation, Release 1.0, October 24 2000.

[6] Lawrence Livermore National Laboratory. MVICH: MPI for
Virtual Interface Architecture, August 2001.

[7] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Darius Buntinas,
Weikuan Yu, Balasubraman Chandrasekaran, Ranjit Noronha,
Peter Wyckoff, and Dhabaleswar K. Panda. MPI over Infini-
Band: Early Experiences. Technical Report, OSU-CISRC-
10/02-TR25, January 2003.

[8] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and
Dhabaleswar K. Panda. High Performance RDMA-Based MPI
Implementation over InfiniBand. In ICS ’03, June 2003.

[9] Mellanox Technologies. Mellanox Technologies.
[10] John M. Mellor-Crummey and Michael L. Scott. Algorithms

for scalable synchronization on shared-memory multiprocessors.
ACM ToCS, 9(1):21–65, 1991.

[11] Message Passing Interface Forum. MPI: A Message Passing In-
terface. In Supercomputing ’93, pages 878–883. IEEE Computer
Society Press, 1993.

[12] P. Shivam, P. Wyckoff and D. K. Panda. EMP:Zero-copy OS-
bypass NIC-driven Gigabit Ethernet Message Passing. In Super-
computing ’01, November 2001.

[13] R. Gupta, P. Balaji, D. K. Panda, and J. Nieplocha. Efficient Col-
lective Operations using Remote Memory Operations on VIA-
Based Clusters. In IPDPS ’03, April 2003.

[14] R. Gupta, V. Tipparaju, J. Nieplocha and D. K. Panda. Efficient
Barrier using Remote Memory Operations on VIA-Based Clus-
ters. In Cluster 02, September 2002.

[15] Marc Snir, Steve Otto, Steve Huss-Lederman, David Walker, and
Jack Dongarra. MPI–The Complete Reference. Volume 1 - The
MPI-1 Core, 2nd edition. The MIT Press, 1998.

[16] Rajeev Thakur, William Gropp, and Ewing Lusk. An Abstract-
Device Interface for Implementing Portable Parallel-I/O Inter-
faces. In Frontiers ’96. IEEE Computer Society, Oct 1996.

[17] Topspin Communications, Inc. Topspin Communications, Inc.
[18] Topspin Communications, Inc. Topspin InfiniBand Host Chan-

nel Adapter.
[19] V. Tipparaju, J. Nieplocha, D. K. Panda. Fast Collective Oper-

ations Using Shared and Remote Memory Access Protocols on
Clusters. In IPDPS ’03, April 2003.

[20] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active Messages: A Mechanism for Integrated Communication
and Computation. In ISCA, pages 256–266, 1992.

8

