
Tapping into the Fountain of CPUs —
On Operating System Support for Programmable Devices

Yaron Weinsberg ∗, Danny Dolev,

Tal Anker †

The Hebrew University Of Jerusalem

{wyaron,dolev,anker}@cs.huji.ac.il

Muli Ben-Yehuda

IBM Haifa Research Lab

muli@il.ibm.com

Pete Wyckoff

Ohio Supercomputer Center

pw@osc.edu

Abstract

The constant race for faster and more powerful CPUs is drawing to
a close. No longer is it feasible to significantly increase the speed of
the CPU without paying a crushing penalty in power consumption
and production costs. Instead of increasing single thread perfor-
mance, the industry is turning to multiple CPU threads or cores
(such as SMT and CMP) and heterogeneous CPU architectures
(such as the Cell Broadband Engine). While this is a step in the
right direction, in every modern PC there is a wealth of untapped
compute resources. The NIC has a CPU; the disk controller is
programmable; some high-end graphics adapters are already more
powerful than host CPUs. Some of these CPUs can perform some
functions more efficiently than the host CPUs. Our operating sys-
tems and programming abstractions should be expanded to let ap-
plications tap into these computational resources and make the best
use of them.

Therefore, we propose the HYDRA framework, which lets ap-
plication developers use the combined power of every compute re-
source in a coherent way. HYDRA is a programming model and a
runtime support layer which enables utilization of host processors
as well as various programmable peripheral devices’ processors.
We present the framework and its application for a demonstrative
use-case, as well as provide a thorough evaluation of its capabili-
ties. Using HYDRA we were able to cut down the development cost
of a system that uses multiple heterogenous compute resources sig-
nificantly.

Categories and Subject Descriptors D.2.11 [Software Architec-
tures]: Domain-specific architectures; D.3.4 [Processors]: Run-
time environments; C.0 [General]: System Architectures

General Terms Design, Experimentation

Keywords Offloading, Operating Systems, Programming Model

∗ Currently affiliated with Microsoft Corporation
† Also affiliated with Radlan-Marvell

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’08, March 1–5, 2008, Seattle, Washington, USA.
Copyright c© 2008 ACM 978-1-59593-958-6/08/0003. . . $5.00

1. Introduction

Today’s modern operating systems (OSes) are complex programs
that perform multiple tasks, doing much more than just multiplex-
ing the computer’s hardware among applications. An OS provides
many of the programming APIs and run-time libraries needed by
application developers. Even the simplest task, such as connecting
to a peer host over a network, is performed by user level libraries
and complementary kernel runtime support.

State-of-the-art peripheral devices allow one to program the pe-
ripheral device and adapt its functionality. For example, modern
graphic adapters can perform matrix operations much faster than
host CPUs. Today peripheral devices are largely ignored and their
increasingly powerful computational capabilities are not being ex-
ploited. If peripheral devices could be adapted dynamically to an
application’s needs, and if their extra computing power could be
harnessed to serve the application, developers would be able to cre-
ate larger and more powerful computer systems.

This paper considers a model in which applications execute co-
operatively and concurrently in host processors and in device pe-
ripherals. In this model, applications can offload specific tasks to
devices to improve the overall performance. Using programmable
devices has traditionally been very difficult, requiring experienced
embedded software designers to implement conceptually simple
tasks. In such cases, interfacing any new device feature with the
host operating system would have to be performed from scratch
and customized for the particular design. Cross-compilation tools
and remote debugging environments do make programming tasks
simpler, but integration with the host operating system is still diffi-
cult. The need for new abstractions and tools for programming such
heterogeneous multi-core systems is apparent.

1.1 Offloading and Onloading

Offloading has been traditionally synonymous with TCP Offload
Engine (TOE) devices (3). Although TOE is a controversial topic,
it is agreed that TOE devices perform well for specific types of
workloads and applications (7). The offloading concept can be gen-
eralized to any programmable peripheral device and extended to in-
clude more than network protocols. For example, file system related
functionality such as indexing or searching could be offloaded to a
programmable disk controller. Leveraging the proximity between
the computational task and the data on which it operates may boost
the system’s performance and reduce the load on the host processor
and memory subsystem. Offloading to several devices at once adds
a new dimension to our ability to handle information close to its
source with limited involvement of the central CPUs. In particular,
expensive memory bus crossings are eliminated.

An offloading skeptic will typically claim that although periph-
eral devices are powerful, today’s PCs have several underutilized

host processors that could be used instead. In response, we present
the following arguments in favor of offloading:

1. Memory bottlenecks — Modern processors have large L2
caches in order to minimize cache misses caused by applica-
tion execution and context swapping. Operations running on
peripherals utilize local memory and filter out the informa-
tion that needs to be brought to and from main memory, hence
reducing memory pressure and cache misses on the main pro-
cessors.

2. Timeliness guarantees — Operations running on peripheral de-
vices can benefit from real-time programming paradigms. A pe-
ripheral device can provide operation timeliness guarantees that
cannot be matched by a general purpose kernel (13).

3. Reduced power consumption — There is a major effort to re-
duce the power consumption of modern processors, which can
be significantly aided by offloading. A Pentium 4 2.8 GHz pro-
cessor consumes 68 W whereas an Intel XScale 600 MHz pro-
cessor, commonly found in peripheral devices, consumes 0.5 W,
two orders of magnitude less. By offloading suitable operations
to low powered peripherals, we reduce the overall system power
consumption.

4. Increased throughput — Network bandwidth has reached the
point where host CPUs can spend all of their cycles just pro-
cessing network traffic (5). Specifically, Figure 1 shows the

GHz/Gbps Ratio (= %cpu util×processor speed
throughput) in the transmit and

receive cases for different transfer packet sizes.1 TCP offload-
ing is a special case of offloading. Our current work suggests
further opportunities in the area of network offload.

(a) GHz/Gbps Transmit Ratio

(b) GHz/Gbps Receive Ratio

Figure 1. GHz/Gbps Ratio

A recently proposed alternative to offloading is “onloading.”
Rather than moving functionality to the device, “onloading” pro-
poses using host processors for I/O processing. For example, the
Piglet (8) operating system dedicates one or more host CPUs to pro-
vide a “Virtual Device Interface.” Although onloading part of the

1 These figures appear in Foong et al. (5) and are used with the authors’
permission.

device’s functionality to a host processor can yield better perfor-
mance, eventually the data will still need to be transferred between
the host CPU and the device and will then incur the bus-crossing
overhead. We also note that Piglet can complement our proposed
framework.

Another onloading direction has been recently proposed by
Regnier et al. (9). The authors proposed to use one of the host’s
processors for TCP processing while using several techniques for
reducing the protocol computation, data manipulation, and inter-
rupt handling overheads. A step forward in this direction is to fully
integrate the network controller with the host CPU (1). This work
presents a simple integrated NIC (SINIC) device that is equivalent
to a conventional NIC and is integrated with the host CPU. The
SINIC device utilizes zero-copy techniques and was shown to sig-
nificantly improve the host’s throughput.

In the remainder of this paper, we present an offloading frame-
work called HYDRA and an example application that derives great
benefit from the framework. The TiVoPC is a software implemen-
tation of the commercial TV appliance Tivo (12). A classical Tivo
appliance is a set-top box that allows for digitally recording all of
one’s favorite TV shows, and enables playback of them at a later
time. Our implementation of the Tivo appliance provides a selected
subset of Tivo’s features. Specifically, we provide online-recording
while watching a media stream and support its playback at a later
time. A typical user-space software implementation of such an ap-
pliance would require the following components listed in Table 1.

Component Description

GUI Provides the viewing area and user controls
(play, pause, rewind and resume).

Streamer Processes the media stream (either from net-
work or storage).

Decoder Decodes the MPEG media stream.
Display Displays the movie on screen.

File Reads or writes previously stored data from
storage.

Table 1. TiVoPC Components Outline

When analyzing a TiVoPC operation, one can see that a major
part of the application logic is invested in transferring packets
from one peripheral device to another. Specifically, the Streamer
component transfers each received packet to the File component,
in order to support future playback, and to the Decoder component.
The decoding component hands a decoded frame to the Display
component, which transfers the raw video frames to the graphics
subsystem.

In order to demonstrate the use of our framework we have
implemented a version of the TiVoPC application that uses multiple
peripheral devices. The resulting data flow of the offload-aware
TiVoPC application is presented in Figure 2. Once a packet is
received at the NIC, it is directly transferred to both the GPU and
the disk controller.2 A decoder component running on the the GPU
can directly decode the MPEG stream and transfer each frame
to the GPU’s internal framebuffer, making it appear in the GUI
window without involving the host CPU at all. In case a user wishes
to replay the stored media stream, a Streamer component running
on the disk controller will transfer previously stored packets to the
Decoder. Section 6 describes the implementation in detail.

The rest of the paper is organized as follows: Section 2 presents
the requirements from an offloading framework and discusses some
of the challenges. Section 3 provides an overview of the program-
ming model and Section 4 discusses the software architecture. Sec-

2 Note that if the bus architecture allows it (e.g., PCIe), this packet could be
transferred in a single bus transaction.

Figure 2. TiVoPC Data Flow

tion 5 provides a mathematical formulation for optimizing complex
offload scenarios. Section 6 provides a case study for developing an
offload-aware application and evaluates its performance. Finally,
Section 7 presents the related work, Section 8 discusses some fu-
ture directions and Section 9 concludes the paper.

2. Bridging the Offloading Gap

Offloading code to a programmable device today is a manual, te-
dious process. Offloading stand-alone code is difficult; offloading
a software component that is part of a larger system with complex
interdependencies even more so. In this section we present the re-
quirements from an offloading framework and some of the chal-
lenges inherent in offloading and in creating an offloading frame-
work in particular. Offloading code to a programmable device re-
quires the following (manual) steps:

• Write it with the specific constraints of the target environment
in mind: Does it have an MMU? What sort of run-time support
does it have? Does it support dynamic memory allocation? Is
there a toolchain that targets that device for the programmer’s
preferred language and environment?

• Compile and link it, using a device-specific toolchain. Some of
the device-specific aspects mentioned previously might be han-
dled by the toolchain. Linking is usually done with the device’s
run-time support libraries, which constrains the programmer to
using an API specific for that particular device.

• Deploy it on the device. Each device has its own process for
transferring the code from host memory to the device, such as
through a firmware update.

Additionally, writing offloaded code presents several chal-
lenges. First, there is a steep learning curve. An offload program-
mer needs to be acquainted with all the relevant hardware speci-
fications and the relevant SDKs. Offcode programming typically
also requires kernel level development skills. Second, it requires
embedded development skills. Usually, it will take an experienced
embedded engineer to develop an efficient, stable and robust sys-
tem. Third, it requires dealing with performance issues, e.g., how
does one communicate efficiently with code running on the host
CPU? This makes getting inter-component information transfer
working correctly and efficiently tricky. Finally, the bulk of the
work needs to be redone for every new device.

An offloading framework should facilitate and automate as
many of the aforementioned steps as possible. It should also ease
the aforementioned challenges of writing offloaded code. The holy
grail is for the programmer to be completely unaware of the fact
that parts of the system she is writing will be running on a pro-
grammable device.

To achieve these goals, an offloading framework must meet the
following requirements: (1) it should not require the programmer to
learn a new language or a new environment; (2) it should abstract
the specific details of given devices as much as possible, so that
the framework will handle the adaptation of the offloaded code to

a specific offload target, rather than the programmer; (3) it should
ease deployment, by deciding when and where to deploy a given
component, as well as facilitating communication of the deployed
component with the rest of the components, regardless of which
host or device CPU they are running on.

3. Programming Model

The programming model provided by HYDRA (16) enables an ap-
plication developer to design offload-aware applications. Such ap-
plications can utilize any available computing resource that offers
programmability support. The model proposes an object-oriented
methodology for developing such applications. Developers use a
set of special components called Offcodes. An Offcode is a com-
ponent that contains its state, a well-defined interface and a thread
of control.

Communication between Offcodes is facilitated by communi-
cation channels with various communication properties as will be
presented in Section 3.2. The programming model enables design-
ing the application by using two orthogonal yet related aspects: the
Application logic aspect and deployment aspect. The developer is
encouraged to reuse Offcodes that are provided as a set of compo-
nents from the vendor or custom made by the developer. The pro-
cess of placing Offcodes at the peripheral devices involves defining
the mapping between components and peripheral devices, both in
software and hardware.

3.1 Offcodes

We envision openly accessed libraries of Offcodes that are provided
as source code, or as object files that can be linked together with the
target device’s firmware. An Offcode is described by an Offcode
Description File (ODF) that uses XML to describe the supported
interfaces, dependencies on other Offcodes, and the target device’s
hardware and software requirements. A detailed description of the
ODF file and the deployment process is given below.

An Offcode can implement multiple interfaces, each of which
contains a set of methods that perform some behavior. Each inter-
face is uniquely identified by a GUID and is also described by the
ODF file using the standard WSDL specification language (2). An
offload-aware application (henceforth, OA-application) communi-
cates with an Offcode using an abstraction called a Channel. An Of-
fcode object file implements only one Offcode, and it has a GUID
that is unique across all Offcodes. All Offcodes implement a com-
mon interface (IOffcode) that is used by the runtime to instantiate
the Offcode and to obtain a specific Offcode’s interface.

Offcodes are created by an OA-application by calling the run-
time CreateOffcode API, which receives an ODF file name that
identifies the target Offcode. Once the Offcode is constructed at
the target device, it is initialized and executed by the HYDRA run-
time. Offcode initialization is performed in two phases. First, the
Initialize method is called so that the can Offcode acquire its local
resources. Since peer Offcodes may not have been offloaded yet,
the Offcode can access local resources only. Once all the related
Offcodes have been offloaded, the StartOffcode method is called.
At this point, inter-Offcode communication is facilitated.

HYDRA provides two ways to invoke an Offcode: transparently
and manually. Achieving syntactic transparency for Offcode invo-
cation requires the use of some “proxy” element that has a similar
interface as the target Offcode. When a user creates an Offcode, a
proxy object is loaded into user-space. All interface methods return
a Call object that contains the relevant method information includ-
ing the serialized input parameters. Once a Call object is obtained,
it can be sent to a target device (or several devices) by using a con-
nected channel. The manual invocation scheme consists of manu-
ally creating the Call object, and using a custom encoder to marshal
arguments and invoke the channels’ methods.

3.2 Channels

Offcodes communicate with each other and with the host applica-
tion by communication channels. Channels are bidirectional path-
ways that can be connected between two endpoints, or connection-
less when only attached to one endpoint.

The runtime assigns a default connectionless channel, called the
Out-Of-Band Channel (OOB-channel) for every OA-application
and Offcode. The OOB-channel is identified by a single endpoint
used to communicate with the Offcode without the need to con-
struct a connected channel, such as for initialization and control
traffic that is not performance critical. The OOB-channel is the de-
fault communication mechanism between peer Offcodes and be-
tween Offcodes and OA-applications. The OOB-channel is usually
used to notify the Offcode regarding management events and avail-
ability of other channels.

For high performance communication, a specialized channel
that is tailored to the needs of the application and the Offcode
would be created. Enabling a specialized channel is performed in
two steps. First, the channel creator determines the channel char-
acteristics and creates its own endpoint of the channel. Second, the
creator attaches an Offcode to the channel. This action implicitly
constructs the second endpoint at the target device, and notifies the
Offcode about the newly available channel. Once the channel is
connected, the channel’s API can be used for communication. The
channel API contains typical operations to read, write and poll. The
channel API also supports registration of a dispatch handler that is
invoked each time the channel has a new request.

Creating a channel involves configuring the channel type, syn-
chronization requirements and buffer management policy. A chan-
nel can be of type Unicast, that can only interconnect two Off-
codes, or Multicast, that can interconnect more than two Offcodes.
A channel can be either unreliable or reliable, where the latter type
is careful not to drop messages even though buffer descriptors are
not available. Note that a multicast channel can utilize hardware
features, if available, to send a single request to multiple recipients
simultaneously.

Figure 3 presents the typical sequence of operations required to
initialize a channel and connect it to a specific device. In this code, a
reliable unicast channel is constructed with a zero-copy policy for
read/write and sequential synchronization guarantees. A callback
handler is then installed at the OA-application side of the channel.
The corresponding handler is invoked by the runtime whenever data
is available on the channel, as opposed to requiring the application
to poll. Connecting an Offcode to a previously created channel is
easily performed by calling the channel’s ConnectOffcode method
which takes the target Offcode reference as a parameter.

3.3 Offcode Manifesto

An Offcode manifesto is the means by which an Offcode defines its
dependencies on peer Offcodes and its requirements from the target
device and software environment.

The manifesto is realized in an Offcode Description File (ODF).
An ODF contains three parts: the first part describes the structure of
the Offcode’s package, containing the binding name of the Offcode
at the target device, and the Offcode’s supported interfaces. We
have chosen to use the WSDL specification for this purpose.

The second part describes the Offcode’s dependencies on peer
Offcodes. It enables a developer to “design” the offloading process
that will occur at deployment time. HYDRA provides several con-
straints that can be used between any two Offcodes (denoted by α
and β):

Link: The Link constraint is denoted as α
Link
⇔ β. This is the

default constraint from α to β, which actually poses no constraints:
α and β may or may not be mutually offloaded (to the same or

/* get our runtime and create the Offcode */

Runtime *rt = GetRuntime();

IOffcode *ocode = rt->v->CreateOffode(rt,"/offcodes/checksum.odf",

&IID_Checksum);

/* get the channel executive */

ChannelExecutive *exec;

ErrorCode res = rt->v->GetOffcode(rt, "hydra.ChannelExecutive",

&IID_ChannelExecutive, &exec);

/* set up the channel */

ChannelConfig config;

config.type = UNICAST_CHANNEL | RELIABLE_CHANNEL;

config.sync = SYNC_SEQUENTIAL;

config.buffering = DIRECT_READ | DIRECT_WRITE;

config.targetDevice = ocode->v->GetDeviceAddr(ocode);

/* create the channel to our target */

Channel *channel = exec->v->CreateChannel(exec, &config);

/* install a callback handler */

channel->v->InstallCallHandler(channel, MyHandler);

Figure 3. Creating a Channel

different target device). It does, however, indicate that at least one
of the Offcodes needs the other to function.

Pull: The Pull constraint is denoted as α
Pull
⇔ β. This reference

is used to ensure that both Offcodes will be offloaded to the same
target device.

Gang: The gang constraint is denoted as α
Gang
⇔ β. This con-

straint is used to ensure that both Offcodes will be offloaded to
their respective target devices. That is, if α is offloaded, β will be
too, albeit on perhaps a different device.

Asymmetric Gang: This constraint is denoted as α
∼Gang
→ β and

provides the asymmetric version of Gang. Offloading β doesn’t
imply offloading α.

The runtime processes an Offcode’s ODF file to produce an
Offloading Layout Graph. This graph is later used by the runtime
for deciding on the actual placement of Offcodes. The last part of
the ODF is concerned with device mappings. In order to enable
dynamic mapping between Offcodes and peripheral devices, on
different host configurations, a developer is required to supply a
list of potential target device classes that can be used for offloading.
Section 3.4 will further provide the motivation for this intentional
design choice.

Figure 4 presents a typical import section defined in an Off-
code’s ODF. The fragment shows how an Offcode defines a Pull
constraint to a peer Offcode. Also note that the developer only
states the class of a potential device on which it can operate. It
is the runtime’s responsibility to locate an instance of such an Of-
fcode which is suitable for running at one of the local devices that
is in one of the listed classes.

3.4 Deployment Process

This section briefly presents the runtime deployment process. Fig-
ure 5 presents the various phases of this process. Once an Offcode
is created by calling the CreateOffcode API, the appropriate Off-
code ODF files are processed by the runtime to construct the appli-
cation’s offloading layout graph. Following that, the runtime deter-
mines the mapping between the Offcode device requirements and
the physical devices that are installed in the specific host. This pro-
cess uses the runtime resource management module and the result-
ing offloading layout graph. Typically, the runtime uses a local li-
brary that is used for storing the actual instances (object files) of the
Offcodes. If such a mapping can not be allocated (due to resource
limitations or incompatibility), the runtime tries to find an Offcode
that is capable of executing at the host CPU.

<offcode>

<!-- offcode package info -->

<package>

<bindname>hydra.net.utils.Socket</bindname>

<GUID>7070714</GUID>

<interface>

<!-- WSDL interface specification >

<include>"/offcodes/socket.wsdl"</include>

</interface>

</package>

<!-- offcode dependencies -->

<sw-env>

<import>

<file>"/offcodes/checksum.xdf"</file>

<bindname>hydra.net.utils.Checksum</bindname>

<reference type=Pull pri=0>

<GUID>6060843</GUID>

</import>

</sw-env>

<!-- device classes -->

<targets>

<device-class id=0x0001>

<name>Network Device</name>

<bus>pci</bus> <!-- (optional) -->

<mac>ethernet</mac>

<vendor>3COM</vendor> <!-- (optional) -->

</device-class>

...

</targets>

</offcode>

Figure 4. Sample Offcode Description File

The next step involves adapting the specific Offcode instances to
the target devices either by executing a corresponding compiler (for
open source Offcodes) or by invoking the dynamic linkage process.
The last phase is the actual offloading of the Offcode which is
further described in Section 4.2.

Figure 5. Deployment Control Flow

4. Architecture

In this section we present the architecture of the runtime system.
The system implements the model and provides facilities for pro-
gramming, testing, deploying, and managing OA-applications and
Offcodes. Both the host OS and the target device firmware must
support the interfaces defined by the programming API and imple-
ment the runtime functionality. A critical decision is to modularize
the framework into independent parts, so that modifying one will
not affect the rest.

Runtime library requirements for a particular target device may
be provided by the device manufacturer, system integrator, or by
researchers and the open source community. The second half of the

runtime system exists on the host as operating system extensions.
Our host implementation for Linux is modular, in that it maintains
strict separation between device-specific code and generic code.
It is implemented as a set of kernel modules that are loadable on
demand and do not require kernel source code modifications.

The runtime is comprised of several components. It is accessed
through the Offloading Access Layer (OAL) that consists of a
kernel-level layer and user-level layer. The user layer is a load-
able library module instantiated by each OA-application that uses
offloading services. This layer interacts with the kernel layer via a
generic, but operating-system specific, interface.

The kernel layer consists of several functional blocks. The Sys-
tem Call Management and Offloading APIs modules implement
the various APIs defined in the programming model. The Chan-
nel Management unit manages the channels by interacting with the
Channel Executive. This module handles channel creation by using
a particular Channel Provider. These providers are target-specific
and will be provided as an extended driver for each programmable
device. A channel provider is specialized in creating various chan-
nel types to the device and provides a cost metric regarding the
“price” for communicating with the device through a specific chan-
nel, in terms of latency and throughput. The executive uses this ca-
pability information to decide on the best provider for a specific
Offcode. The Resource Management unit keeps track of all active
Offcodes and related resources. Resources are managed hierarchi-
cally to allow for robust clean-up of child resources in the case
of a failing parent object. This module uses the Offcode Depot to
store the logical mappings of Offcodes. The Memory Management
module exports memory services such as user memory pinning that
is used by zero-copy channels. The Layout Management unit per-
forms layout related functions such as analyzing the offloading lay-
out graph using the Offload Layout Resolver.

We distinguish between pseudo Offcodes and user Offcodes.
Pseudo Offcodes are runtime components that happen to be imple-
mented as Offcodes, but were not written by the user for a par-
ticular application. Components may be implemented as pseudo
Offcodes because they export well-defined interfaces, or in order
to reduce the processing time needed for dynamic linking of user
Offcodes. Dynamic linking of user Offcodes requires resolving all
undefined references of an Offcode binary while installing it at the
target device—having the Offcodes communicate with the run-time
through pseudo Offcodes is an easy way of limiting the number of
symbols that need to be resolved.

One example of a pseudo Offcode is the “hydra.Runtime” Of-
fcode which provides the runtime functionality through a well de-
fined interface. The runtime’s GetOffcode method enables a user
Offcode to get an interface to any Offcode currently registered at
the runtime by providing it the Offcode’s GUID. Another example
is the “hydra.Heap” Offcode, which provides an interface to the OS
memory routines.

4.1 Channel Internals

Channels interconnect Offcodes and are created by the channel
providers. Since a channel is hardware specific, it is created accord-
ing to the target device-host interfaces. Figure 6 shows a sample
zero-copy channel architecture implemented for a programmable
NIC. The right side of the figure presents the logical view as seen
from the OA-application while the left side presents the internal
architecture.

The figure presents an OA-application that communicates with
Offcode α through a proxy connected to a private channel identified
by a channel descriptor. The HYDRA runtime maps each channel
descriptor to an internal channel object that is created by the tar-
get device channel provider. This specific provider constructs two
kernel buffer rings to communicate with the target Offcode. The In-

Figure 6. Example Zero-Copy Channel

Ring holds memory descriptors that point to host memory locations
that contain the Call objects. Although a Call object usually con-
tains a return descriptor for delivering the invocation return value,
the OutRing is necessary since it contains pre-posted application
descriptors that are used by the runtime at the device for sponta-
neous messages triggered by the Offcode. The channel endpoint
at the device holds a shadowed copy of the ring descriptors; and,
channel management is maintained using a dedicated shared mem-
ory region per channel. The Call object is copied using the NIC’s
DMA bus master capabilities to an internal buffer owned by the tar-
get Offcode. The Call is de-serialized and the Offcode is invoked.
The Offcode uses the embedded return descriptor to DMA the re-
turn value back to the application and optionally notifies the ap-
plication using an event (usually interrupt) described by the shared
memory region.

4.2 Dynamic Offcode Loading

Supporting dynamic Offcode loading is an important building
block in the HYDRA framework. We have considered different ap-
proaches for implementing dynamic loading. The simple solution
would be to hand over the Offcode to the target device and require
that each device implement a simple Offcode loader. However this
naive solution is quite expensive in terms of device resources. An-
other approach would be to fully perform the linking process at the
host, and only transfer the Offcode when it is ready to be deployed
(at a specific memory region). The device’s loader will merely need
to initialize the Offcode and execute it.

The HYDRA runtime is built to support both approaches.
HYDRA support for dynamic offloading is provided by a set of
device-specific loaders that implement a generic interface for Off-
code loading. The interface is intended to be implemented by the
device driver of each target peripheral. Each loader can decide
whether to transfer the Offcode as is, or to perform some process-
ing at the host first, depending on features of the target.

As a proof of concept, we have created such a loader for our
programmable network card. The dynamic offloading logic is im-
plemented both in the device and in the host. A device-specific
host-based loader is implemented at the NIC’s driver; it uses the
OOB-channel of the device’s runtime to communicate with the tar-
get device loader, which is actually a pseudo Offcode at the target
device. The offloading process is performed in several phases. First,
the host-based loader calculates the Offcode’s size and invokes the
AllocateOffcodeMemory function exported by the device’s loader.
This method allocates the memory region that will be used to store
the Offcode binary and returns the device’s memory address to the
caller. The host-based loader dynamically generates a linker file ad-
justed by the returned address and links the Offcode object. It then

transfers the linked Offcode to the target device where it is placed
and executed.

5. Optimizing Complex Layouts

The strength of the proposed programming model lies in the the
ability to reuse the Offcode components. On the one hand, reusabil-
ity may simplify and speed-up the development cycle, but on the
other hand, in multi-user environments, reusing the same Offcode
in several applications may substantially complicate the offload-
ing layout design. Intuitively, the problem of defining an optimal
offloading layout graph for a group of offload-aware applications
may introduce an infeasible combinatorial problem. This section
provides an Integer Linear Programming methodology (ILP) for
optimizing such complex layouts. The purpose of such a formu-
lation is to enable expression of an offloading layout graph as a
set of linear equations. Any ILP solver can then be used to solve
the equations given a target optimization function. We provide the
mathematical presentation of an offloading layout graph and later
present, as an example, two possible criteria that could be used as
target optimization functions. We note that simple graphs are usu-
ally trivial to solve, while for complex scenarios a greedy solution
is not always optimal. Hence the need for the linear equation for-
mulation.

5.1 Formulation

As the offloading layout design essentially produces a graph, it is
natural to express the dependencies among the graph vertices (e.g.,
Offcodes) mathematically. This section provides the ILP formula-
tion that is required for optimizing the offloading layout graph.

5.1.1 Definitions

We begin by defining the basic elements of the layout graph. The
layout graph G = (V,E) includes the set of Offcodes as vertices,
and the channel constraints among them are the edges. At deploy-
ment time the runtime associates with each node n (Offcode) a
compatibility target vector ~Cn representing the potential target de-
vices that can host the Offcode. Note that the host CPUs are in-
cluded in the list of devices. Let N = |V | be the total number of

Offcodes, and let K = |~C| be the number of HYDRA compatible
devices.

NOTATION 5.1 Let ~C be a constant binary bit vector. Ck
n = 1 if

Offcode n can be offloaded to device k. ∀n ∈ N,k ∈ K, Ck
n ∈ {0,1}.

To simplify the presentation we assume the that the first entry in

each vector ~C corresponds to the host CPUs.

NOTATION 5.2 Let ~X be the ILP output vector. Xk
n = 1 if Offcode n

should be offloaded to device k. ∀n ∈ N,k ∈ K, Xk
n ∈ {0,1}.

The following equation guarantees unique placement of each
Offcode, i.e. each Offcode can be offloaded to a single device:

N

∑
n=1

K

∑
k=1

Xk
nCk

n = 1 . (1)

Additionally, an Offcode n is not offloaded (remains in the host
CPU) if X0

n = 1.

5.1.2 Constraints Formulation

For each one of the channel constraints (See Section 3.3), an integer
linear equation is defined.

NOTATION 5.3 Let En
m = (m,n) be an edge from Offcode m to

Offcode n.

The following equations formulate the various channel con-
straints.

Pull Constraint:

∀En
m ∈ Symmetric Pull,∀k : Xk

n = Xk
m . (2)

Gang Constraint:

∀En
m ∈ Symmetric Gang :

K

∑
k=1

Xk
n =

K

∑
k=1

Xk
m . (3)

Asymmetric Gang Constraint:

∀En
m ∈ Asymmetric Gang :

K

∑
k=1

Xk
n ≤

K

∑
k=1

Xk
m . (4)

These equations are sufficient to represent the joint offloading
layout graph as a set of linear equations.

5.1.3 Optimization Objectives

We have identified several optimization functions, two of which are
presented below. The list is by no means complete; additional ob-
jective functions can be easily added to address various applications
needs.

1. Maximized Offloading – This objective is used to offload as
many Offcodes as possible. The motivation for such a goal is to
minimize the CPU usage and memory contention at the host:

max

(

N

∑
n=1

K

∑
k=1

Xk
n

)

.

2. Maximize Bus Usage – This objective aim is to fully utilize the
bus interconnect bandwidth among devices. A “Price” value is
assigned to each Offcode. This value represents the estimated
average bus bandwidth that is required by the specific Offcode.
The bigger the value, the more bandwidth is required by the Of-
fcode. In addition, we define a capability matrix per host. This
matrix describes the maximal bus bandwidth between every pair
of peripheral devices. This matrix is used to limit the number of
offloaded Offcodes as the ILP solution must reflect physical bus
limitations.

6. Inside TiVoPC: A Framework Use Case

This section present a case study for developing the TiVoPC appli-
cation using our proposed framework. We focus on showing how
HYDRA simplifies the design and development of offload-aware ap-
plications.

6.1 TiVoPC Architecture

The system architecture of the TiVoPC application is presented in
Figure 7. The figure shows a client-server architecture comprised
of a Video Server and a Video Client. The Video Server, on the left
hand side of Figure 7, corresponds to the cable TV broadcaster.
Typically, Network Attached Storage (NAS) devices are used to
store massive amounts of broadcasted media (MPEG movies, radio
channels, etc.). In order to emulate such a broadcaster, we have
implemented a software-based server that is executed on a standard
PC. The server reads the media from a NAS device using NFS, and
sends the media to the client as a stream of UDP packets.

The architecture of the Video Client is shown on the right hand
side of Figure 7. The client PC hosts the following programmable
peripherals:

• NIC – This device is connected to the multimedia streaming
server and receives incoming UDP packets.

• “Smart Disk” – Although programmable disk controllers are
common, in order to speed up prototyping, we have decided
to emulate one by using a programmable NIC. Our “Smart
NIC” exports a standard block device that interacts with an NFS
server to store the data (i.e., the streamed video is effectively
stored on a remote disk). Essentially, we have created an NFS
Offcode that implements various parts of the NFS protocol.

• GPU – The graphics processing unit is responsible for render-
ing and displaying the movie.

6.2 TiVoPC Logic

As the programming model suggests (Section 3), the first phase
in the development process should be designing the TiVoPC logic.
This phase is usually performed without considering the physical
placement of the various components. Figure 7 presents the fol-
lowing TiVoPC components.

• GUI – The user interface contains a viewing area, to display
the received video stream, and several controls used to rewind,
pause and play the movie.

• Streamer – This component handles incoming packets. Specif-
ically it extracts the payload that contains the three types of
MPEG frames: the I-frame, P-frame and B-frame. The compo-
nent also processes data that is received from the storage de-
vice. It implements a callback method that is invoked each time
a packet is received. Upon invocation, the Streamer extracts the
payload and passes it to the Decoder component.

• Decoder – This component decodes the MPEG frame for later
display on the screen, and works in conjunction with a Display
component.

• Display – This component represents the display. For exam-
ple, in a host-level implementation, this object could wrap an
OpenGL FrameBuffer object or simply use a memory map of
the GPU’s physical memory.

• File – This component provides the basic file level APIs, such
as open, read, write and close.

• Broadcast – This component is used at the Video Server to
broadcast the movie frames to the client. This component pro-
vides unreliable message delivery as it uses UDP as its trans-
mission protocol.

Some components could be omitted. For example, the Streamer
could directly access the local file system using the standard APIs,
without the need for an additional File object. Alternatively, the De-
coder could directly manipulate the display without the need for an-
other level of indirection that is realized as the Display component.
Although these omissions are possible, introducing finer grained
objects improves the flexibility of the design. For instance, if a Dis-
play Offcode for the local GPU is found, either locally or in the
vendor’s Offcode library, it will be used at the GPU, thus increas-
ing overall application performance.

Once the components have been identified, we decide which
of them will be implemented as Offcodes. Additionally, the Of-
fcode communication channels are also specified. Following are
three characteristics that typically indicate a component should be
implemented as an Offcode:

1. The component can use specialized capabilities that exist only
at a peripheral device.

2. Offloading the component reduces the amount of traffic on host
busses.

3. The component is tightly coupled to another offloaded Offcode.

Figure 7. TiVoPC Software Architecture

In our example, all the components except the GUI fall into one
of these three categories and thus will be implemented as Offcodes.

6.3 TiVoPC Offloading Layout

The offloading layout of the TiVoPC application matches an Off-
code to a peripheral device. The ODF discussed in Section 3.3 con-
tains this information in addition to the Offcode’s constraints re-
garding its peer Offcodes. For brevity we omit the ODF details and
instead provide considerations for designing the offloading layout
as depicted in Figure 8.

Figure 8. TiVoPC Offloading Layout

The Streamer Offcode resides at the NIC and at the “Smart
Disk” devices. Reusing the same component at both devices is
achieved by storing the received frames, without modification, at
the storage device, so that the source of the media packet becomes
oblivious to this component. Since we do not want packets to
traverse the bus twice, a Gang constraint is imposed between the
two components.

Intuitively, the Display Offcode should be placed at the GPU
device, while the Decoder Offcode could be placed either at the
NIC or at the GPU. In both cases, one bus transfer is required to
move the media packet from the NIC to the GPU. The preference
of placing the Decoder at the GPU comes form two reasons. First,
the GPU may have specialized MPEG support on board. Second, a
single Decoder could be used instead of duplicating the component
at the NIC and at the “Smart Disk.” In essence, requiring a Gang

constraint between the two Offcodes will minimize the number of
bus crossing operations. Therefore, the Streamer Offcode holds a
Gang constraint to the Decoder, which holds a Pull constraint to
the Display.

The File Offcode should reside at the “Smart Disk” and should
be Pulled with the Streamer as both Offcodes tightly interact while
the movie is stored to or loaded from the storage device.

Figure 9. Jitter Distribution

A simple Link constraint is sufficient between both Streamers
and the GUI since only control information passes between them.
As this is the default channel constraint, it can be omitted from the
layout specification.

Once the application logic and the offloading layout have been
coded, communication channels between the various components
are set. In the TiVoPC application, we use a zero-copy read/write
channel for all communication channels except for the two chan-
nels between the GUI and the Streamer Offcodes. Communication
between the GUI and the Streamers utilize the default, low priority,
OOB-Channel.

6.4 Benchmarks Description

Our experimental test-bed consists of two 2.4 GHz Intel Pen-
tium IV computers with 512 MB RAM and 256 kB L2 cache.
The hosts are interconnected by a Dell PowerConnect 6024 Giga-
bit switch through a programmable 3Com 3C985B-SX NIC. The
hosts execute Linux kernel version 2.6.15-1. The TiVoPC server is
configured to send a single 1 kB packet every 5 ms. For demon-
stration purposes only, we did not send packets at video frames
boundaries. What we did is to send the video stream in arbitrary
chunks of 1 kB while maintaining the required bit rate. Specifically,
for a video stream of 200 kB/s we send a 1 kB chunk every 5 ms.
We executed the following benchmarks on an idle system.

Video Server Packet Jitter

Three versions of the Video Server have been implemented as
indexed by the numbers 1–3 at the left hand side of Figure 7.

The first implementation (indexed by number 1) uses two UDP
socket endpoints. Every 5 ms, a movie frame is read to a statically
allocated buffer of size 1 kB, then a connected UDP socket targeted
at the client host is used to send the packet to the TiVoPC client.

The second implementation (indexed by number 2) utilizes the
“sendfile” system call. This call operates in two steps. In the first
step, the file content is copied into a kernel buffer by the device’s
DMA engine. In our case, the server uses a NAS to store the
movies, hence the NIC is the one that acts as the DMA master.
In the second step, a socket buffer is initialized with the required
information about the location and length of the data just received.
Scatter-gather hardware support is required at the networking de-
vice in order to be able to handle such a socket buffer. In cases
where the hardware fails to support this feature, the CPU copies
the data to the socket buffer.

The third implementation is an offload-aware server (indexed by
number 3). This server is implemented as a simple Offcode residing
at the networking device. It uses the File Offcode to read the data
from the NAS device, and the Broadcast Offcode to transmit the
data to the client.

Figure 9 shows, for each server implementation, a histogram
and the corresponding cumulative distribution function (CDF) of
packet jitter as measured at the client machine. A low level of jitter
is more important than reliable delivery in video applications, as
an unsteady packet rate is easily detectable by a human viewer.
Figure 9 clearly shows that the offloaded version of the streaming
server produces a significantly lower jitter. This observation is
further strengthened by the corresponding CDF. The user level
version that uses “sendfile” produces better results than the “Simple
Server” due to fewer context switches and data copying operations.

Table 2 provides the jitter statistics of received packets corre-
sponding to the execution of the three servers.

Scenario Median Average Std Dev

Simple Server 6.99 7.00 0.5521
Sendfile Server 6.00 5.99 0.4720
Offloaded Server 5.00 5.00 0.0369

Table 2. Client Side Jitter Statistics

Video Server CPU Utilization

This benchmark is intended to validate our assumption that offload-
ing certain parts of an application will reduce pressure on the host
memory subsystem. The L2 cache miss rate that is experienced by
the kernel is measured on the server during each one of the follow-
ing tests. Samples were taken every 5 seconds during a 10 minute
run. All measurements were normalized to the miss rate experi-
enced by an otherwise idle system. Figure 10 shows the results.
Although the TiVoPC application is mostly I/O bound, executing it
at the host incurs a 7% increase in the L2 cache miss rate, as seen
in the “Simple Server” column.

The second implementation uses the “sendfile” API that avoids
unnecessary buffer copies between kernel and user buffers. As indi-
cated by Figure 10, the effect on the L2 cache is negligible. The rea-
son becomes clear as the “sendfile” source code is examined. Since
most of today’s network devices support scatter-gather operations,
the kernel essentially follows a zero-copy data path between the
two sockets. This approach reduces the number of context switches
and totally eliminates data duplication inside the kernel. The third
implementation, “Offloaded server,” achieves the best results, with
L2 cache miss rates on par with an idle system.

Figure 10. L2 Slowdown (Server Side)

Scenario Median Average Std Dev

Idle 2.90% 2.86% 0.09%
Simple Server 7.50% 7.50% 0.12%
Sendfile Server 5.90% 6.20% 0.08%
Offloaded Server 2.90% 2.86% 0.09%

Table 3. Server Side CPU Utilization

Table 3 presents the CPU utilization at the server side. Each row
corresponds to one of the three scenarios presented in Figure 10.
Notice that the CPU utilization of the offloaded version of our
server aligns with the Idle scenario results, as the host processor
is oblivious to the underlying activity.

Video Client Memory and CPU Utilization

The client side implementation, shown on the right of Figure 7,
involves five offloaded components, compared to the two compo-
nents in the server, and more interesting constraints. However, its
performance results closely resemble the server side results.

Scenario Median Average Std Dev

Idle Client 2.90% 2.86% 0.09%
User-space Client 7.30% 6.90% 0.32%
Offloaded Client 2.90% 2.86% 0.09%

Table 4. Client Side CPU Utilization

Table 4 shows that the offloading is complete in the sense
that there are no components left on the host processor. An idle
machine and a machine that is running the fully offloaded client
both consume the same background level of CPU cycles. The non-
offloaded user-space client consumes more CPU, although the load
is very small compared to the total capability of the host processor.
In terms of L2 cache misses (not shown), the idle machine and
offloaded client have the same count, while the non-offloaded client
generates 12% more misses. Much of this is due to the MPEG
decoding process.

7. Related Work

Most of today’s work focuses on extensions to specific peripheral
devices. This section describes the state-of-the-art in offloading
research, ordered by its relevance to this work.

Spine (4) is a safe execution environment for programmable
network interface cards. It enables the installation of user han-
dlers, written in Modula-3, on the NIC. Applications and exten-
sions communicate via a message-passing model based on Active
Messages (14). Although Spine enables the extension of host appli-
cations to use NIC resources, it has several major limitations. First,
since all extensions are executed when an event occurs, building
stand-alone applications on the NIC is difficult. Even for event-
driven applications, the developer is forced to dissect the applica-

tion logic to create a set of handlers. Second, Spine’s runtime does
not support the deployment process of handlers or provide a way to
design the offloading aspects of the host application.

Object-based Storage Devices (OSD) grew from a research
project called Active Disks from CMU (10) and have recently been
standardized by the ANSI T10 group (15). OSD is a protocol that
defines higher-level methods for the creation, writing, reading and
deleting of data objects on a disk. Implementing OSD requires a
high degree of processing capability on the disk controllers or the
devices themselves and can offer the potential for extension.

Although not dealing with offloading, FarGo (6) and FarGo-
DA (17) propose a programming model that enables a developer to
specify relocation and disconnection semantics in a separate phase
during the application development cycle. The basic assumption
for this work is that the application is fully comprised of a set of
components that are tagged by a specific interface. The components
are hosted in a virtual machine and can migrate to a remote VM
using marshaling and unmarshaling mechanisms. Our framework
goes beyond this model by defining an offloading layout that is
used to define the offloading aspects of the application.

Ethernet Message Passing (EMP) (11) is a zero-copy and OS-
bypass messaging layer for Gigabit Ethernet. EMP protocol pro-
cessing is done on the NIC and a host application (usually through
an MPI library) can directly manipulate the NIC. It provides very
low message latency and high throughput but is very task-specific
for MPI and lacks the support for generic offloading or host appli-
cation integration.

8. Future Work

In the near future a handful of underutilized computing resources
will be available in any home PC. Treating these computing re-
sources as first class citizens by seamlessly offloading computation
to them whenever possible will enable a new breed of applications.
This section briefly presents some of the potential fields that will
benefit from offloading capabilities.

Virtualization – Rapidly improving virtualization technologies
allow one to run multiple OSes simultaneously on one physical ma-
chine, as “virtual machines.” Offload-capable devices could per-
form more efficiently some of the tasks that are performed today
on the host CPUs, such as multiplexing incoming network packets
directly to the destination virtual machine.

Advanced Storage Services – Programmability support that will
soon be offered by advanced disk controllers will open new possi-
bilities for implementing advanced storage services directly inside
the disk or controller. Programmable disks will provide an opportu-
nity to run I/O-intensive computations efficiently by running them
closer to the data. Potential applications include content indexing
and searching, virus scanning, storage backup, mirroring, snapshots
and continuous data protection.

9. Conclusion

Hardware and software are neck and neck, pushing each other
forward. This paper claims that it is the OS’s turn to act. Hardware
manufacturers have provided an excessive amount of computing
resources, which rest idle most of the time. It is time for the
OS community to design tools and programming abstracts that
will enable a developer to efficiently utilize every programmable
component in the system. As a proof of concept, we have presented
the HYDRA framework which proposes a unique new dimension
of flexibility for the architects of high performance applications:
the ability to program offloading layout policies separately from
the application’s logic. We have developed a programming model
that carefully balances between programmer scalability and system
scalability. We believe that programmable devices will continue

to grow in popularity. It is only a matter of time until an OS on
a workstation or a PC will be considered as a switching element
among heterogenous processing cores.

Acknowledgments

We would like to thank Maxim Grabarnik for spending many hours
working on the TiVoPC application. We would also like to thank
Ittai Abraham and Adamovsky Olga for assisting in the ILP formu-
lation. Special thanks go to Galen Hunt and Prof. Ken Birman for
the opportunity to discuss this work with them and for their valu-
able insights regarding the framework.

References

[1] N. L. Binkert, A. G. Saidi, and S. K. Reinhardt. Integrated network
interfaces for high-bandwidth TCP/IP. In ASPLOS-XII: Proc. of the

12th intl. conf. on arch. support for programming languages and

operating systems, pages 315–324, New York, NY, 2006. ACM Press.

[2] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
Service Definition Language (WSDL). http://www.w3.org/TR/wsdl.

[3] A. Currid. TCP offload to the rescue. Queue, 2(3):58–65, 2004.

[4] M. E. Fiuczynski, R. P. Martin, T. Owa, and B. N. Bershad. Spine:
a safe programmable and integrated network environment. In EW 8,
1998.

[5] A. P. Foong, T. R. Huff, H. H. Hum, J. R. Patwardhan, and G. J.
Regnier. TCP performance re-visited. In ISPASS ’03: Proc. of the

2003 IEEE intl. symp. on perf. analysis of systems and software, pages
70–79, Washington, DC, 2003. IEEE Computer Society.

[6] O. Holder, I. Ben-Shaul, and H. Gazit. Dynamic layout of distributed
applications in FarGo. In ICSE ’99: Proceedings of the 21st in-

ternational conference on software engineering, pages 163–173, Los
Alamitos, CA, 1999. IEEE Computer Society Press.

[7] J. C. Mogul. TCP offload is a dumb idea whose time has come. In HO-

TOS’03: Proceedings of the 9th conference on Hot Topics in Operating

Systems, pages 25–30, Berkeley, CA, 2003. USENIX Association.

[8] S. J. Muir. Piglet: an operating system for network appliances. PhD
thesis, 2001. Supervisor: Jonathan M. Smith.

[9] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn, R. Hugga-
halli, D. Newell, L. Cline, and A. Foong. TCP onloading for data
center servers. Computer, 37(11):48–58, 2004.

[10] E. Riedel, G. A. Gibson, and C. Faloutsos. Active storage for large-
scale data mining and multimedia. In Proc. 24th Int. Conf. Very Large

Data Bases, VLDB, pages 62–73, 1998.

[11] P. Shivam, P. Wyckoff, and D. Panda. EMP: zero-copy OS-bypass
NIC-driven gigabit ethernet message passing. In SC’01, Nov. 2001.

[12] TiVo Inc homepage. Available at site: http://www.tivo.com.

[13] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick. System
noise, OS clock ticks, and fine-grained parallel applications. In ICS

’05: Proc. of the 19th annual intl. conf. on supercomputing, pages
303–312, New York, NY, 2005. ACM Press.

[14] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Ac-
tive messages: A mechanism for integrated communication and com-
putation. In 19th International Symposium on Computer Architecture,
pages 256–266, Gold Coast, Australia, 1992.

[15] R. O. Weber. Information technology—SCSI object-based storage
device commands -2 (OSD-2). Technical Report T10/1731-D, INCITS
Technical Committee T10, Oct. 2004.

[16] Y. Weinsberg. An Operating System Specification for Dynamic Code

Offloading to Programmable Devices. PhD thesis, The Hebrew Uni-
versity Of Jerusalem, October 2007.

[17] Y. Weinsberg and I. Ben-Shaul. A programming model and system
support for disconnected-aware applications on resource-constrained
devices. In ICSE ’02: Proc. of the 24th intl. conf. on software engi-

neering, pages 374–384, New York, NY, 2002. ACM Press.

