HYDRA: A Novel Framework for Making
High-Performance Computing Offload Capable

Yaron Weinsberg® Danny Dolev’
The Hebrew University Of Jerusalem

Abstract

The proliferation of programmable peripheral devices for
computer systems opens new possibilities for academic research
that will influence system designs in the near future. Pro-
grammability is a key feature that enables application-specific
extensions to improve performance and offer new features. In-
creasing transistor density and decreasing cost provide excess
computational power in devices such as disk controllers, net-
work interfaces and video cards.

This paper proposes an innovative programming model and
runtime support that enables utilization of such devices by pro-
viding a generic code offloading framework. The framework en-
ables an application developer to design the offloading aspects
of the application by specifying an “offloading layout”, which
is enforced by the runtime during application deployment. The
framework also provides the necessary development tools and
programming constructs for developing such applications.

We test our framework by implementing a packet generator on
a programmable network card for network testing. The offloaded
application produces traffic at five times the rate, and with inter-
packet variability that is many orders of magnitude smaller than
the non-offloaded version.

1 Introduction

According to the International Technology Roadmap for
Semiconductors, by 2007 one million transistors will cost less
than 26 cents. This ongoing trend of decreasing cost and increas-
ing density of transistors motivates hardware and embedded sys-
tem designers to use programmable solutions in their products.
Such designs are cheaper and more flexible than custom ASIC
solutions. Performance capabilities of programmable products,
and microprocessors in particular, will extend well up into the
range of applications that formerly required DSPs or custom
hardware designs.

*Email: wyaron@cs.huji.ac.il

TEmail: dolev@cs.huji.ac.il, part of the research was done while visiting
Cornell University

*Email: tala@marvell .com

YEmail: pweosc.edu

Tal Anker*
RadLan - Marvell

Pete Wyckoff®
Ohio Supercomputer Center

This paper considers the model where applications execute
cooperatively in the host processor as well as in device peripher-
als. In this model, applications can delegate tasks to devices with
various architectures and constraints. Using programmable de-
vices has traditionally been very difficult, requiring experienced
embedded software designers to implement conceptually simple
tasks. Interfacing a new device feature with the host operating
system would be performed from scratch and customized for the
particular design. The availability of cross-compilation tools and
remote debugging environments are making the programming
tasks simpler, but integration with the host operating system is
still very difficult.

We introduce the concept of an “offloading layout” as a new
phase in the process of an application development. After de-
signing the application’s logic, the programmer will design the
offloading layout using a generic set of abstractions. The lay-
out describes the interaction between the application and the of-
floaded code at various phases, such as deployment, execution
and termination.

Currently, there is no generic programming model and corre-
sponding runtime support that enable a developer to design the
offloading aspects of an application. The current paper involves
the design and implementation of a framework to address these
challenges.

1.1 Programming Facets

The programming model is divided into two loosely-coupled
facets.

1. Application logic programming — This is the mechanism
of designing the basic logic of the application. Offcodes are
provided as a set of reusable components from the vendor
or custom made by the developer.

2. Offload layout programming — This task defines the map-
ping between components and peripheral devices, both in
software and hardware. It also sets offloading priorities and
channel characteristics between offcodes and the host.

One of the major challenges in designing such a model is
in actually keeping the two facets separate, though complimen-
tary. Programming the application logic should resemble pro-
gramming a regular application. Programming the layout should

affect the application logic as little as possible. This separation
is not possible today.

1.2 Offcode

An offcode defines the minimal unit for offloading. Offcodes
are provided as source code, which needs to be compiled to the
target device, or as a pre-compiled binary. An offcode is further
described by an Offcode Description File (ODF) that uses XML
to describe the offloading layout constraints and the target device
hardware and software requirements.

An offcode can implement multiple interfaces, each of which
contains a set of methods that perform some behavior. Each
interface is uniquely identified by a Globally Unique Identifier
(GUID). An OA-application communicates with an offcode us-
ing an abstraction called a Channel. An offcode object file im-
plements only one offcode, and it has a GUID that is unique
across all offcodes. All offcodes implement a common interface
that is used by the runtime to instantiate the offcode and to obtain
a specific offcode’s interface.

1.2.1 Offcode Creation

Offcodes are created by an OA application by calling the run-
time CreateOffcode API. The runtime generates and uses an of-
floading layout graph to offload the OA-applications’ offcodes.
Section 1.5 details the mechanism used for the mapping of off-
codes to their respective devices. Once the offcode is constructed
at the target device, it is initialized and executed by the HYDRA
runtime. Offcode initialization is performed in two phases. First,
the Initialize method is called and the offcode acquires its local
resources. Since peer offcodes may have not been offloaded yet,
the offcode can access local resources only. Once all the related
offcodes have been offloaded, the StartOffcode method is called.
At this point inter-offcode communication is facilitated. Once
an offcode has been explicitly created, a set of attributes can be
applied to it. HYDRA provides an API to get and set offcode at-
tributes. There are several attributes already defined under, e.g.
OBSOLETE_TIME and OFFLOAD_PRIORITY. The latter can be
used to affect the offloading sequence.

1.2.2 Offcode Invocation

HYDRA provides two ways to invoke an offcode: transpar-
ently and manually. Achieving syntactic transparency for off-
code invocation requires the use of some “proxy” element that
has a similar interface as the target offcode. When a user cre-
ates an offcode, a proxy object is loaded into user-space. All
interface methods return a Call object that contains the relevant
method information including the serialized input parameters.
Once a Call object is obtained, it can be sent to a target device
(or several devices) by using a connected channel. The manual
invocation scheme consists of manually creating the Call object,
and using a custom encoder to marshal arguments and invoke the
channels’ methods.

1.3 Channels

Offcodes are connected to each other and to the host appli-
cation by communication channels. Channels are bidirectional
pathways that can be connected between two endpoints, or con-
nectionless when only attached to one endpoint.

The runtime assigns a default connectionless channel,
called the Out-Of-Band Channel (OOB-channel) for every OA-
application and offcode. The OOB-channel is identified by a sin-
gle endpoint used to communicate with the offcode without the
need to construct a connected channel, such as for initialization
and control traffic that is not performance critical. The OOB-
channel is the default communication mechanism between peer
offcodes and between offcodes and OA-applications. The OOB-
channel is usually used to notify the offcode regarding manage-
ment events and availability of other channels.

1.3.1 Channel Creation

The OOB-channel can be used for simple data transfer be-
tween the application and offcodes and among offcodes. For
high performance communication, a specialized channel that is
tailored to the needs of the application and the offcode can be
created. Enabling a specialized channel is performed in two
steps. First, the channel creator determines the channel charac-
teristics and creates its own endpoint of the channel. Second, the
creator attaches an offcode to the channel. This action implicitly
constructs the second endpoint at the target device, and notifies
the offcode about the newly available channel. Once the channel
is connected, the channel’s API can be used for communication.
The channel API contains typical operations of read, write and
poll. The channel API also supports registration of a dispatch
handler that is invoked each time the channel has a new request.

Creating a channel involves configuring the channel type,
synchronization requirements and buffer management policy. A
channel can be of type Unicast, that can only interconnect two
offcodes, or Multicast, that can interconnect more than two off-
codes. A channel can be either unreliable or reliable, where the
latter type is careful not to drop messages even though buffer
descriptors are not available. Note that a multicast channel can
utilize hardware features, if available, to send a single request to
multiple recipients simultaneously.

1.4 Offload Layout Programming

The offloading layout is usually statically defined or set dur-
ing deployment. The reasoning behind this is to minimize the
overhead concerned with the offloading operations. We envision
the offcodes as specialized components performing one task on a
specific device. The overhead imposed by enabling migration of
offcodes between devices is superfluous if this feature is rarely
used. We intend in the future to support the rare migration of off-
codes between target devices and the host kernel when required.
Channel constraints are used to direct the placement of offcodes
when multiple offcodes are required to support an application.

The collection of channel constraints and their related semantics
are defined below.)

Link Constraint: The Link constraint is denoted as o "2 B.
This is the default basic channel constraint from o to 3, which
actually posess no constraints: o and may or may not be mu-
tually offloaded (to the same or different target device).

Pull Constraint: The Pull constraint is denoted as o ;gz B.
This reference is used to ensure that both offcodes will be of-
floaded to the same target device. This definition implies several
additional constraints. First, neither oo nor B can be offloaded
separately. Second, o can be a target of a Pull reference, i.e.,
52 o making Pull transitive - offloading & will offload o, and
hence (.

Gang Constraint: Gang constraint is denoted as o s B.
This constraint is used to ensure that both offcodes will be of-
floaded to their target devices, respectively. Gang constraint is
also transitive and the only difference from Pull is that the of-
fload target can be a set of devices instead of a single device.

An OA-Application can also influence layout by setting the
offload priority for each offcode that it directly requires. Once
a reference priority is defined, it is inherited by subsequent off-
codes required by the top-level offcode until a Link reference is
encountered.

1.5 Offcode Manifesto

An offcode manifesto is the mean by which an offcode de-
fines its requirements from a target device and peer offcodes.
The manifesto is realized in an Offcode Description File (ODF).
An ODF contains three parts: The first part describes the struc-
ture of the offcode’s package, containing the binary code and
other general properties. The second part defines the target de-
vice’s hardware. The last part of the ODF concerns the soft-
ware environment. The offcode declares the interfaces used in
its implementation that should be defined in the target device’s
execution environment. Currently, all required interfaces must
be defined by a GUID (much like offcodes themselves). The
basic runtime interfaces defined by HYDRA are available to all
offcodes without an explicit interface requirement.

2 Experimental Results

In the previous sections we described the HYDRA program-
ming model, in this section we demonstrate the use of HYDRA
through a toy example application. We implemented an offload-
aware traffic generator that targets to generate packets with fixed
inter-packet delays. We evaluate the performance of this applica-
tion and compare the results with an equivalent user-level appli-
cation. We have integrated the HYDRA runtime into the original
NIC’s firmware.

2.0.1 Traffic Generator Evaluation

We have implemented the application once using HYDRA and
once without the use of an offloaded component. We evalu-
ated the designs using two hosts, Intel Pentium 4 2.4 GHz with

512 MB and a Tigon2 programmable network card, intercon-
nected by a 100 Mb/s switch. We tried to fully utilize the link
capacity by generating packets at fixed inter-packet delays and
for different frame sizes.

User-Space Traffic Generator : The benchmark results for
the user-space application is given in Table 1. Although the
achieved throughput is quite good, the dispersion of the inter-
arrival times is enormous, so large as to make the average almost
meaningless.

Size | Throughput | Avg. Arrival = Std | CPU =+ Std
Bytes Mb/s us %
64 6.0 140 + 8000 100+ 3
80 13.4 141 £ 9000 9+ 7
96 21.8 159 + 11000 9+ 8
192 56.8 164 + 6000 98 + 11
384 96.7 175 £ 4000 81+ 11
768 97.8 205 + 4000 37 +£28
1514 98.6 244 + 5000 33+ 5

Table 1. User Space Traffic Generator Results

It is also evident from the table that delivering the generated
data to the application is difficult due to the very high CPU load,
especially with small packet sizes. The processor capacity prob-
lem, driven by the costs associated with interrupts, directly im-
pacts the throughput seen by the applications.

Size Throughput | Avg. Arrival/Std | CPU

Bytes Mb/s us %
64 23.9 34+ 6 2
640P! 51.5 16+ 8 2
768 98.4 65+ 13 2

1514 98.8 126 £ 50 2

Table 2. Offload-Aware Traffic Generator Results

Offload-Aware Traffic Generator : The results from the
offload-aware traffic generator are summarized in Table 2. The
data shows that the inter-arrival times are uniform with small
standard deviation. Notice that for 64-byte packets, the achieved
throughput is only a quarter of the link’s bandwidth. In order
to achieve the full link capacity, a generator must produce a 64-
byte packet every ~10us. Because we have not tried to optimize
the HYDRA runtime for this or any specific application, the gen-
erator can only send packets at a rate limited by the device’s OS
constraints. This specific limit is related to the number of MAC
descriptors at the NIC and the processing overhead involved in
managing them (which is further exacerbated when dealing with
small packets). In order to further improve the throughput for
such small packets, we have created an optimized version of the
device’s OS that can reuse a single MAC descriptor for sending
the same packet multiple times. The table shows that for the op-
timized version (indicated by the 64°P' table entry) the through-
put has been significantly improved. This sort of optimization
may be undertaken as needed by particular applications that use
HYDRA.

