
High Performance Implementation of MPI Derived Datatype Communication
over InfiniBand �

Jiesheng Wuy Pete Wyckoffz Dhabaleswar Panday

yComputer and Information Science
The Ohio State University

Columbus, OH 43210
fwuj, pandag@cis.ohio-state.edu

zOhio Supercomputer Center
1224 Kinnear Road

Columbus, OH 43212
pw@osc.edu

Abstract

In this paper, a systematic study of two main types of
approach for MPI datatype communication (Pack/Unpack-
based approaches and Copy-Reduced approaches) is car-
ried out on the InfiniBand network. We focus on overlap-
ping packing, network communication, and unpacking in
the Pack/Unpack-based approaches. We use RDMA op-
erations to avoid packing and/or unpacking in the Copy-
Reduced approaches. Four schemes (Buffer-Centric Seg-
ment Pack/Unpack, RDMA Write Gather With Unpack,
Pack with RDMA Read Scatter, and Multiple RDMA
Writes have been proposed. Three of them have been im-
plemented and evaluated based on one MPI implementa-
tion over InfiniBand. Performance results of a vector micro-
benchmark demonstrate that latency is improved by a factor
of up to 3.4 and bandwidth by a factor of up to 3.6 com-
pared to the current datatype communication implementa-
tion. Collective operations like MPI Alltoall are demon-
strated to benefit. A factor of up to 2.0 improvement has
been seen in our measurements of those collective opera-
tions on an 8-node system.

1. Introduction
The MPI (Message Passing Interface) Standard [17] has

evolved as a de facto parallel programming model for dis-
tributed memory systems. MPI has a number of features
that provide both convenience and high performance. One
of the important features is MPI derived datatype. Derived
datatype provides a powerful and general way to describe
arbitrary collections of noncontiguous data in memory in a
compact fashion. The MPI standard provides run time sup-
port to create MPI derived datatypes and use them in other
functions, such as regular message passing functions, per-
forming remote memory access (RMA), and I/O operations.

Typically, MPI derived datatypes allow users to have
concise representations of many commonly used data lay-

�This research is supported in part by Department of Energy’s Grant
#DE-FC02-01ER25506, and National Science Foundation’s grants #EIA-
9986052, #CCR-0204429, and #CCR-0311542.

outs [8, 21]. An example is given in Section 2.2. It can
be expected that MPI derived datatype could become a
key aid in application development. In practice, however,
the poor performance of many MPI implementations with
derived datatypes [4, 8, 22, 25] becomes a barrier to us-
ing derived datatypes. A programmer often prefers pack-
ing and unpacking noncontiguous data manually even with
considerable effort. Therefore, it would not be surpris-
ing that there is no datatype communication in either the
NAS benchmarks [3] or the ASCI benchmarks [15]. On
the other hand, noncontiguous communication occurs com-
monly in many applications, such as (de)composition of
multi-dimensional data volumes [2, 6], fast Fourier trans-
form, and finite-element codes [4]. Thus, it is very im-
portant to provide efficient MPI datatype communication in
MPI implementations.

MPI datatype communication involves datatype process-
ing, and noncontiguous data communication (in this paper,
unless stated otherwise, we refer datatype to noncontiguous
datatype). In many networks which only support transfer
of contiguous data blocks, packing data into and unpacking
data out of a contiguous buffer are usually used for non-
contiguous data communication. There are several potential
ways to improve MPI datatype communication accordingly:
Improve datatype processing system [8, 11, 21]; Optimize
packing and unpacking procedures [4, 8]; Take advantage
of network features to improve noncontiguous data commu-
nication [25, 28]. In this paper, we focus on the last two
areas based on the InfiniBand network.

We systematically study two main types of approach
for MPI datatype communication: Pack/Unpack-based ap-
proaches and Copy-Reduced approaches on the InfiniBand
network. In the first type of approach, to reduce the impact
of pack and unpack costs on the performance of datatype
communication, we propose a new technique called Buffer-
Centric Segment Pack/Unpack (BC-SPUP) to pipeline the
three steps in a datatype communication: packing, net-
work communication, and unpacking. This technique of-
fers potential overlaps between packing, network com-
munication, and unpacking. Particularly, InfiniBand pro-
vides bandwidth comparable to system memory copy band-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

width, which makes more sense to overlap these three steps.
Therefore, the pack/unpack costs visible to applications are
reduced effectively. In addition, this technique also re-
duces dynamic memory allocation and deallocation, mem-
ory registration and deregistration by using pre-registered
pack/unpack buffers as much as possible.

In Copy-Reduced approaches, the main idea is to use
InfiniBand remote direct memory access (RDMA) opera-
tions to transfer noncontiguous data in a datatype message
directly without packing and/or unpacking. We design three
schemes: RDMA Write Gather with Unpack (RWG-UP),
which avoids packing on the sender side; Pack with RDMA
Read Scatter (P-RRS) , which avoids unpacking on the re-
ceiver side; and Multiple RDMA Writes (Multi-W), which
avoids both packing and unpacking and achieves zero-copy
datatype communication.

We design the aforementioned four schemes. We iden-
tify their design issues and provide solutions to these is-
sues. Three of them: BC-SPUP, RWG-UP, and Multi-
W, have been implemented and evaluated based on MVA-
PICH [19, 14], an MPI implementation over InfiniBand. In
this paper, we make the following contributions:

1. Memory copies in datatype communication have sig-
nificant impact on the InfiniBand network which offers
high bandwidth comparable to memory bandwidth.
The proposed Buffer-Centric Segment Pack/Unpack
scheme effectively overlaps packing, network com-
munication, and unpacking; and reduces pack/unpack
costs visible to applications.

2. RDMA Gather/Scatter functionality can be used to
transfer datatype messages efficiently by reducing
memory copies. It allows multiple blocks to be trans-
ferred in one single operation. This not only reduces
the total startup costs, but also increases network uti-
lization.

3. Using multiple RDMA writes to transfer a datatype
message is very efficient due to zero-copy with con-
dition that each block size is large enough. Otherwise,
the total startup costs and the low network utilization
of small messages offset the benefit of zero-copy.

4. Memory registration and deregistration on networks
with RDMA capabilities add a new dimension to
datatype communication. Our scheme to register and
deregister datatype message buffers permits efficient
use of RDMA operations for datatype communication.

5. The BC-SPUP, RWG-UP and Multi-W schemes have
been implemented and evaluated based on MVAPICH.
Significant improvement has been achieved in both
point-to-point and collective datatype communication.
These schemes perform differently in different cases.
A combination of these schemes can be deployed in an
MPI implementation. An appropriate scheme can be
chosen with respect to the datatype characteristics. We
provide a method to do such selection dynamically and
intelligently.

The rest of the paper is organized as follows. Section 2
presents an overview of MVAPICH, its datatype communi-
cation, and a motivating example that illustrates problems
and potential improvements in the current implementation.
Section 3 describes the pack/unpack approaches. Section 4
describes three copy-reduced approaches. We describe how
to choose an appropriate approach dynamically with respect
to the datatype characteristics in Section 5. The perfor-
mance results are presented in Section 6. We examine some
related work in Section 7 and draw our conclusions and dis-
cuss possible future work in Section 8.

2. Datatype Communication in MVAPICH
In this section, we first describe MVAPICH, an MPI

implementation over InfiniBand [19, 14], including its ba-
sic communication protocols and datatype communication.
Then we present a motivating example to demonstrate per-
formance problems of datatype communication in MVA-
PICH and discuss possible ways to improve datatype com-
munication performance.

2.1. Overview of MVAPICH

MVAPICH is a high performance MPI implementation
on InfiniBand. Its design is based on MPICH [24] and
MVICH [12]. There are two basic protocols in MVAPICH:
Eager and Rendezvous. In Eager protocol, a message is
transferred eagerly to a receiver’s internal buffer regardless
of whether a receive operation had been issued or not. In
this protocol, data is first copied into an internal buffer on
the sender side. Then it is transferred to an internal buffer
on the receiver side. Later, data is copied from the receiver
internal buffer into the application buffer. The Eager proto-
col is used to transfer small and control messages.

In the Rendezvous protocol, the sender and the receiver
first perform handshake to synchronize with each other.
This synchronization ensures that a matched receive oper-
ation has been issued before data transfer. User buffers
on both sides are registered and related information is ex-
changed in the handshake procedure. A zero-copy imple-
mentation of the Rendezvous protocol is implemented us-
ing RDMA Write operations. The Rendezvous protocol is
used to transfer large messages.

In the current MVAPICH, we have not exploited the de-
sign space for MPI derived datatype communication over
InfiniBand. The MVAPICH datatype communication path
is derived from MPICH and MVICH without change. Fig-
ure 1 shows the communication paths for both small and
large datatype messages in the current MVAPICH. For
small datatype messages, there are two memory copies
on both send and receive sides. One is between user
buffers and pack/unpack buffers. Another is between Eager
Protocol internal buffers (pre-registered) and pack/unpack
buffers. To transfer a large datatype message, both sides
allocate pack and unpack buffers dynamically. The sender
packs data into a pack buffer and then RDMA writes data
into the receiver’s unpack buffer. The receiver unpacks data
into the user buffer. Zero-copy messaging happens only
between the pack and unpack buffers. In both protocols,
pack and unpack buffers are allocated and freed dynami-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Large datatype message

1
2
3
4

1: start 2: reply 3:data write 4: finish

Copy

Write
RDMA

Small datatype message

Pack/

User buf

Unpack

Eager
internal buf

User buf

Pack/
Unpack buf bufCopy

Pack Unpack Pack Unpack

Figure 1. Datatype Communication in MVAPICH

cally. This pack/unpack scheme is a generic datatype com-
munication method in many MPI implementations.

2.2. A Motivating Example

Many MPI implementations perform poorly with derived
datatypes [4, 8, 22, 25, 20]. We use a vector datatype
ping-pong latency test to show performance problems in the
generic scheme and particular issues arisen in MVAPICH
over InfiniBand.

Suppose we want to send one or more columns in a
two-dimensional 128�4096 integer array from one pro-
cess to another process. There are several potential
schemes. The first scheme builds a derived datatype us-
ing MPI Type vector(128, x, 4096, MPI INT,
&newtype), where x is the number of columns, and then
to use this newtype in MPI Send() and MPI Recv().
The second scheme performs manual pack and unpack and
only transfers contiguous messages. The third scheme
transfers each contiguous block one by one using individ-
ual MPI calls. We refer these three schemes as Datatype,
Manual, and Multiple schemes, respectively.

One particular issue with the generic scheme on Infini-
Band network is that dynamic pack and unpack buffers may
incur on-the-fly memory registration and deregistration in
each datatype operation. It is possible that different pack
and unpack buffers are used in different datatype operations.
We call this case as Datatype plus registration and deregis-
tration (DT + reg for short in Figure 2).

Figure 2 shows a log-log plot of the ping-pong laten-
cies of the aforementioned cases with variable numbers of
columns in MVAPICH. As a reference, the latency results
for transferring the same size of contiguous data, termed as
Contig, are also shown.

Several observations can be made. First, no more than
one quarter of contiguous communication performance is
achieved in any scheme. All schemes except Multiple have
at least two memory copies on top of contiguous communi-
cation, one on each side. Second, Manual performs a little
better than Datatype. This is because of datatype processing
overhead. Note that the vector datatype used is very simple.
For some complicated datatypes, this overhead may be sig-
nificant [11]. Third, Datatype plus registration and dereg-
istration (DT+reg) is much slower than Datatype. Fourth,
Multiple performs a little better when the block size is large
enough. In this case, Rendzvous protocol is used. How-
ever, each individual MPI call needs to pay the handshake
overhead. The total cost of all calls degrades the zero-copy
benefit. In other cases where Eager protocol is used, pe-

8

16

32

64

128

256

512

1024

2048

4096

8192

1 4 16 64 256 1024

La
te

nc
y

(u
s)

Number of Columns

Contig
Manual

Datatype
DT+reg
Multiple

Figure 2. Vector Datatype Transfer Latency
Comparison Across Different Schemes.

formance suffers due to the total protocol overhead and low
network utilization.

Therefore, the poor performance of datatype communi-
cation comes from: (1) memory copy; (2) memory regis-
tration and deregistration; (3) datatype processing; (4) total
startup costs of operations; and (5) low network utilization
due to small messages. This example motivates us to re-
design the datatype communication path in MVAPICH.

In the following Section 3 and Section 4, we present four
schemes to improve performance of datatype communica-
tion.

3. Pack/Unpack-Based Approaches

In this section, we propose a Buffer-Centric Segment
Pack/Unpack scheme (BC-SPUP) and discuss its potential
benefits and design issues.

3.1. Buffer-centric Segment Pack/Unpack

As discussed in Section 2, the generic pack/unpack
scheme has been deployed in many MPI implementations
due to its simplicity. However, the performance of this
scheme is poor. First, it incurs intermediate copies. Usually
two additional copies are required. Second, dynamic pack
and unpack buffers incur many memory allocation and deal-
location operations. Third, for networks which require that
buffers be registered before communication, dynamic pack
and unpack buffers may incur on-the-fly memory registra-
tion and deregistration. Fourth, packing, communication,
and unpacking are serialized because packing and unpack-
ing are performed on a whole datatype message.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

To overcome these performance problems, we propose a
scheme, called Buffer-Centric Segment Pack/Unpack (BC-
SPUP). The BC-SPUP scheme uses two techniques to
achieve high performance. First, it uses pre-allocated
buffers for pack and unpack operations. These buffers
are also optimized and ready for communication, such as
aligned on page boundary and registered for RDMA oper-
ations. Second, it breaks a datatype message into several
segments and applies the basic pack/unpack processing to
each segment.

The BC-SPUP scheme has the following potential ad-
vantages. First, it avoids dynamic memory allocation
and deallocation, reducing system overheads [5]. Sec-
ond, it eliminates memory registration and deregistration
on pack/unpack buffers. Third, these buffers can be well
aligned for better communication performance. Fourth, this
scheme has the potential to overlap packing, network com-
munication, and unpacking.

Note that this scheme still needs two copies, one for each
side. However, most of the copy costs are not visible to end
users due to overlap between packing, communication, and
unpacking.

3.2. Design Issues in BC-SPUP
There are three issues in the BC-SPUP schemes: how

to pipeline the sender’s processing; how to pipeline the re-
ceiver’s processing; and how to deal with the limited pre-
registered pack/unpack buffers.

3.2.1 Pipelining Sender Processing
One of the main objectives in the BC-SPUP scheme is to
overlap host processing (including datatype processing and
packing/unpacking) and communication. This overlap is
achieved by breaking a large datatype message into sev-
eral segments and pipelining the host processing and com-
munication of each segment. This pipelining at the sender
has a pronounced effect when operating in the context of
a Rendezvous send. In this case it is not possible to start
the next message from the application point of view, thus
pipelining within this message shows substantial improve-
ment. In the case where the application submits multiple
small messages instead of large ones, these will be pipelined
independently of our choice of datatype processing. How-
ever, to enable a sender to perform packing on any part of
a datatype message, partial datatype processing is required.
Partial datatype processing allows us to start and stop the
processing of a datatype at nearly arbitrary points. Several
techniques [21, 11] have been proposed to provide partial
processing on MPI datatypes. Another issue is to choose
the segment size. Given a datatype message, the segment
size should be chosen to provide good overlap and to utilize
high network bandwidth as well.

3.2.2 Pipelining Receiver Processing
A receiver must know when each segment arrives to
pipeline. This requires a notification per segment for a
datatype message. A sender can use RDMA Write with Im-
mediate data to send each segment. Then a receive descrip-
tor is consumed and a completion entry is generated into a

CQ. However, this approach requires that multiple receive
descriptors have been posted for the coming segments. In
another way, the send can write a flag to a specified loca-
tion in the receiver memory. The receiver then can check
this flag to detect the arrival of a segment. This approach
can avoid pre-posting receive descriptors and possible flow
control. However, it requires one more RDMA operation
per each segment or techniques discussed in [14]. In our
design, we choose RDMA Write with Immediate data.

3.2.3 Handling Buffer Limit

The size of pre-registered pack/unpack buffer pool should
be limited to an appropriate size. We could have a per-
connection buffer pool to simplify buffer management;
however, it will occupy a significant amount of physi-
cal memory and limit scalability. It is desirable that the
pack/unpack buffer pool in each process be used to com-
municate with any remote process. In case of burst com-
munication, the pack/unpack buffer pool may be used up.
If all pack buffers are used up, a sender can stop sending
messages and wait for completion of previous operation for
pack buffers. If all unpack buffers are used up, a receiver
can delay response to the sender and then stall the com-
munication until unpack buffers are available. Another so-
lution to this issue is to allocate extra pack/unpack buffers
when they are used up. These buffers can be added into
the pack/unpack buffer pool. When the total size exceeds
some threshold, some of these extra pack/unpack buffers
may be deregistered. We choose the second solution. When
pack/unpack buffers are used up, we fall back to the dy-
namic pack/unpack allocation and registration as in the ba-
sic pack/unpack scheme.

4. Copy-Reduced Approaches

A common feature in the Pack/Unpack-based ap-
proaches described above is that data is copied between user
buffers and pack/unpack buffers. Copy-reduced approaches
are proposed to reduce or avoid these copies. In this section,
we describe three design schemes: RDMA Write Gather
with Unpack, which avoids packing on the sender side; Pack
with RDMA Read Scatter, which avoids unpacking on the
receiver side; and Multiple RDMA Writes, which avoids
both packing and unpacking.

4.1. RDMA Write Gather with Unpack

In RDMA Write Gather with Unpack (RWG-UP)
scheme, only unpack buffers are assigned on the receiver
side. A sender uses RDMA Write with Gather operations
to write multiple contiguous blocks of a datatype message
from its user buffers directly into the receiver’s unpack
buffer. Then, the receiver unpacks data into its user buffers.
Figure 3 shows this scheme. Thus, packing (i.e. one copy)
is eliminated on the sender side. Since a relatively large
number of blocks can be gathered in one RDMA Write op-
eration (for example, the current Mellanox SDK supports
64 blocks), the total number of RDMA Write operations
needed to transfer the whole datatype message is reduced
significantly. Therefore, the total startup overhead of all

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

RDMA operations is reasonably low. In addition, informa-
tion about a receiver’s unpack buffer for performing RDMA
Write is simple.

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

RDMA
Gather

User

Receiver

Unpack

buffer

buffer User buffer

Unpack

Sender

Figure 3. RDMA Write Gather with Unpack
Scheme.

This scheme can easily achieve segment unpack as dis-
cussed in the BC-SPUP scheme in Section 3.1 to mask the
memory copy cost on the receiver side. The sender can
break a large message into several segments. Each time
it uses RDMA Write with Gather to send a segment and
drives the receiver to unpack the incoming segment. To en-
able RDMA Write operations on a datatype message, the
sender needs to register all contiguous pieces of the datatype
message. Unlike registering and deregistering a contiguous
buffer, memory registration and deregistration on datatype
message buffers are more complicated. We discuss how to
achieve efficient memory registration and deregistration on
datatype message buffers in details in Section 4.4.1.

4.2. Pack with RDMA Read Scatter
As shown in Figure 4, the Pack with RDMA Read Scatter

(P-RRS) scheme follows the exactly opposite procedure of
the above RDMA Write Gather with Unpack scheme. The
sender packs a datatype message into a pack buffer, then it
asks the receiver to read it directly using RDMA Read op-
erations. The receiver can scatter what it reads into multiple
blocks of its datatype message buffer in one single opera-
tion.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

User

Receiver

buffer User buffer

Pack

Pack
buffer

RDMA Read
Scatter

Sender

Figure 4. RDMA Read Scatter with Pack
Scheme.

This scheme has almost the same requirements as men-
tioned in the RWG-UP scheme. However, this scheme is
a little more costly to pipeline packing and communica-
tion. The sender can have segment pack, however, when
a segment is available, a control message must be sent to
the receiver to trigger the receiver’s RDMA Read opera-
tion. Another difference is that RDMA Read performance
is always lower than that of RDMA Write. This scheme
may be useful for asymmetric datatype communication: the

sender’s datatype is contiguous and the receiver’s datatype
is noncontiguous. For communication with noncontiguous
datatypes on both sides, this scheme will be less efficient
than the above RWG-UP scheme. Due to these observa-
tions, this scheme is not implemented in our implementa-
tion.

4.3. Multiple RDMA Writes
The Multiple RDMA Writes scheme (Multi-W) writes

each contiguous piece of a datatype message directly into
the receiver’s buffer, as shown in Figure 5. This scheme can
achieve zero-copy datatype messaging. There are two re-
quirements. First, all contiguous blocks of user datatype
message buffers must be registered. Second, the sender
should be aware of the layouts of contiguous blocks in the
receiver user buffer. That means the receiver must send the
sender not only its buffer information, but also its datatype
information. Then, the sender can decide the source and
destination buffers for each RDMA Write operation accord-
ing to these information.

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

User

Receiver

buffer User buffer

RDMA Write

RDMA Write

RDMA Write

RDMA Write

Sender

Figure 5. Multiple RDMA Writes Scheme.
One of the disadvantages in this scheme is the number

of RDMA operations may be large. The total costs of post-
ing each RDMA write descriptor one by one may be very
high. This problem can be alleviated by an extended IBA
Verbs interface which supports posting a list descriptors in
one call [16]. Another disadvantage is that network uti-
lization may be low because the message sizes in RDMA
writes are limited to the sizes of contiguous blocks. How-
ever, it can be expected that when these sizes are reasonably
large, this scheme can achieve good performance because of
zero-copy messaging. The third disadvantage is that some
datatype information may be complicated. We discuss how
a receiver can send its datatype information to a sender ef-
ficiently in Section 4.4.2.

4.4. Design Issues in Copy-Reduced Approaches
Copy-Reduced approaches show very attractive potential

benefits due to reduced memory copies. However, several
issues need to be addressed for these schemes to be used
in MPI implementations to achieve high performance of
datatype communication. Note that in heterogeneous sys-
tems, the byte-order issue in the copy-reduced apporaches
is out of the scope of this paper. We limit our discussion
to a system in which RDMA operations can be performed
directly on user buffers.

4.4.1 Reducing Memory Registration Overhead
Reducing overheads of memory registration and deregis-
tration on datatype message buffers is a common issue in

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

all three Copy-Reduced schemes. Techniques such as Pin-
down cache [9] and FMRD [27] mainly deal with registra-
tion and deregistration of contiguous buffers. There is an-
other complication in registering datatype message buffers
due to data noncontiguity in these buffers.

In [28], we proposed an efficient approach, Optimistic
Group Registration (OGR) to register a list of arbitrary
buffers. OGR also deals with the situation in which gaps
between two buffers may not really have been allocated by
the application. Thus, it is a more general case than the case
of MPI datatype message buffers.

The Optimistic Group Registration scheme first groups
buffers into several memory regions. A cost model is used
to achieve the tradeoff between the number of operations
and the buffer size to be registered and deregistered. De-
tails of the model can be found in [28]. Large gaps which
nulls any benefit over individual registration are filtered out.
Then, it registers each region independently. The effective-
ness of this scheme has been demonstrated in [28] as well.

4.4.2 Handling Receiver’s Datatypes
A unique issue arises in the Multiple RDMA Writes
scheme: handling the receiver’s datatype on the sender side.
The sender needs to know the layout of data in the receiver
Datatype message buffer.

An MPI datatype can be represented by a linear list of
<offset, length> tuples. Other light-weight repre-
sentation formats such as type tree [11] and dataloop [21]
can be used here to reduce the size of datatype represen-
tation messages. To avoid sending datatype representation
for each operation, a datatype cache mechanism [10] can be
used. This cache mechanism was proposed by Träff et al in
the context of performing MPI-2 [18] one-sided communi-
cation. We extend this cache mechanism to handle datatype
free and datatype index reuse. In case the receiver frees a
datatype, and reuses the type index for a new datatype, the
receiver is responsible for sending the new datatype repre-
sentation. To achieve this, we associate a version number
with each type index. When a type index is reused, its ver-
sion number increases by one. The receiver can detect the
version number change and then send the new datatype pre-
sentation to the sender. The sender simply replaces the ob-
solete datatype in its cache with the new one.

5. Choosing an Appropriate Approach
We discussed four main schemes to transfer datatype

messages in the last two sections. These schemes have their
own advantages and disadvantages. Accordingly, they of-
fer different performance in different situations. An inter-
esting question is: Given a datatype communication, can
we choose the best approach to perform data transfer? In
this section, we discuss a method to choose an appropriate
approach for a given datatype message communication dy-
namically and intelligently.

5.1. Small Datatype Messaging
Small datatype messages are transferred using the Eager

protocol, as mentioned in Section 2.1. Since the amount
of data copied is relatively small, the BC-SPUP scheme

with only one segment can be used to achieve both high
performance and simplicity. Different from the generic
pack/unpack scheme (shown in Figure 1), the Eager pro-
tocol internal buffers are used as the pack/unpack buffers
directly. One memory copy on each side is eliminated.

5.2. Large Datatype Messaging

Large datatype messages are transferred using the Ren-
dezvous protocol. The handshake in this protocol (shown
in Figure 1) can help the sender choose an appropriate ap-
proach by taking both its and the receiver’s datatype char-
acteristics into account. The basic procedure is as follows.

First, both the sender and the receiver get the statistic
information of its datatype, including the total size, the av-
erage contiguous block size, the median contiguous block
size, and the deviation of contiguous block sizes. These in-
formation can be obtained statically or dynamically.

Second, the sender sends a Rendezvous start control
message to the receiver. While waiting for the Rendezvous
reply message, the sender uses its datatype statistic infor-
mation to decide whether pack is used or not. Some simple
rules can be applied. Given a datatype, if its average con-
tiguous block size is very small and the deviation among
all contiguous block sizes is also small, it is highly possible
that layout of data in this datatype is very sparse. Pack-
ing these sparse data into a contiguous buffer may be better.
When the sender has its initial decision, it can begin to per-
form either packing or memory registration.

Third, when the Rendezvous start arrives and a matched
receive request is issued, the receiver decides whether the
segment unpack is beneficial or not. The same rules as
on the sender side can be applied. If the layout of data is
sparse, the receiver can assign an unpack buffer. Otherwise,
user buffers are used directly. In the first case, only the
unpack buffer information is sent in the Rendezvous reply
message, indicating that the unpack scheme is chosen. In
the second case, the datatype information and the datatype
message buffer information are sent in the Rendezvous re-
ply message, indicating that RDMA operations on the user
buffers are expected.

Lastly, when it receives the Rendezvous reply message,
the sender knows the receiver’s decision. Combining the
receiver’s decision and its initial decision in the second step,
the sender can finalize its decision and start communication
with the appropriate scheme. Table 1 shows how the sender
makes its final decision.

Table 1. Choosing an appropriate approach
Sender’s Initial Receiver’s Sender’s Final

Decision Decision Decision
Pack Unpack BC-SPUP
Pack Copy-Reduced Multi-W

Copy-Reduced Unpack RWG-UP
Copy-Reduced Copy-Reduced Multi-W

The proposed method takes full advantage of the hand-
shake in the Rendezvous protocol and incurs little overhead.
Note that it is possible that different schemes can be used in

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

different parts of a single datatype message. For simplicity,
we choose only one scheme for an entire datatype message.

6 Performance Results

We individually implemented the Buffer-centric Seg-
ment Pack/Unpack (BC-SPUP), RDMA Write Gather with
UnPack (RWG-UP), and Multiple RDMA Write (Multi-
W) schemes into MVAPICH [14, 19]. Due to space lim-
itation, the implementation details are not covered in this
paper. Interested readers can refer to [26]. This section
presents performance results from a range of benchmarks
on our implementations of three schemes in MVAPICH.
We attempted to find some standard benchmarks such as the
NAS benchmarks [3] and the ASCI blue benchmarks [15],
in which we wished datatype communications were used.
Unfortunately no noncontiguous datatype communication
is used in these benchmarks yet, perhaps due to the limited
performance achieved in most applications. SKaMPI [20]
provides benchmark for MPI derived datatypes. The test
datatypes are synthetic and most parameters are defined by
users. For simplicity, we developed our own benchmarks,
with intention to capture typical usage of derived datatypes.
Unless stated otherwise, the unit megabytes (MB) in this
paper is an abbreviation for 220 bytes, or 1024�1024 bytes.

In this section, we first compare point-to-point latency
and bandwidth, and performance of collective operations in
different implementations. Then, we quantify effects of sev-
eral design choices on the performance of datatype commu-
nication, including segment unpack, list descriptor post and
buffer usage.

6.1. Experimental setup
Our experimental testbed consists of a cluster system

consisting of 8 nodes built around SuperMicro SUPER
P4DL6 motherboards and GC chipsets which include 64-bit
133 MHz PCI-X interfaces. Each node has two Intel Xeon
2.4 GHz processors with a 512 kB L2 cache and a 400 MHz
front side bus. The machines are connected with Mellanox
InfiniHost MT23108 DualPort 4x HCA adapter through an
InfiniScale MT43132 Eight 4x Port InfiniBand Switch. The
Mellanox InfiniHost HCA SDK version is thca-x86-0.2.0-
build-001. The adapter firmware version is fw-23108-rel-
1 17 0000-rc12-build-001. We used the Linux RedHat 7.2
operating system.

6.2. Vector Micro-benchmark
We evaluated the same example described in Section 2.2

in three new implementations: BC-SPUP, RWG-UP, and
Multi-W. Unless stated otherwise, in our tests, segment un-
pack was enabled in the RWG-UP scheme and list descrip-
tor post was enabled in the Multi-W scheme. In this bench-
mark, a certain number of columns in a two-dimensional
128�4096 integer array are transferred between two pro-
cesses. These columns can be represented by a vector
datatype shown in Section 2.2. The number of columns
varies from 1 to 2048.

Figure 6 compares ping-pong latencies in different im-
plementations, including the current MVAPICH datatype
implementation (“Generic”). BC-SPUP performs better

than the Generic scheme consistently. It gives a factor of 1.5
improvement over the Generic scheme for large datatype
messages. RWG-UP performs better than the Generic
scheme in most cases, except that the size of contiguous
block is too small for RDMA operations to achieve good
performance. It gives a factor of up to 1.8 improvement
over the Generic scheme. Multi-W offers a factor of 3.4 im-
provement when the number of columns is large. When the
size of contiguous blocks is small, Multi-W performance
degrades significantly.

Figure 7 compares their bandwidth. In the bandwidth
test, the same vector datatype is used. The sender pushes
100 consecutive datatype messages and then waits for a re-
ply from the receiver when all messages have been received.
Both BC-SPUP and RWG-UP give a factor of 1.2–2.0 im-
provement over the Generic scheme. Multi-W gives a factor
of 1.4–3.6 improvement over the Generic scheme when the
number of columns is larger than 64. Similarly, when the
number of columns varies from 4 to 64, Multi-W perfor-
mance degrades a lot because of the large number of RDMA
Write operations and the small message size in each opera-
tion.

When the number of columns is 1 or 2, the datatype
message follows the Eager protocol and has the same com-
munication path in all BC-SPUP, RWG-UP and Multi-W
schemes. Thus, the performance is identical. Compared to
the Generic scheme, two copies are saved as mentioned in
Section 5.1. Thus, there is perceivable improvement over
the Generic scheme.

6.3. Performance of MPI Alltoall
Collective datatype communication can benefit from

high performance point-to-point datatype communication
provided in our implementations. We noticed that some
collective operations such as MPI Bcast perform ex-
plicit pack and unpack operations in their implementation
when noncontiguous datatype communication occurs [23],
these collective operations will not benefit from the perfor-
mance improvement of point-to-point datatype communi-
cation achieved in our implementations. Many of others,
which still use point-to-point noncontiguous datatype com-
munication in their implementation [23], can benefit from
our implementations.

We designed a test to evaluate MPI Alltoall perfor-
mance with derived datatypes. In the previous tests, all
block sizes are same. In this test, we designed a structure
datatype in which the size of its contiguous blocks is dif-
ferent. The datatype is designed as shown in Figure 8: the
block size varies from one integer to x integers. The gap
(empty blocks in the plot) between two blocks equals to the
size of the first block.

...... ...

x1 2 4

Figure 8. A Struct Datatype.

Figure 9 compares MPI Alltoall performance of four
datatype communication implementations. We use 8 pro-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 8 32 128 512 2048

La
ten

cy
 (u

s)

Number of Columns

Generic
BC-SPUP
RWG-UP

Multi-W

0

0.5

1

1.5

2

2.5

3

3.5

2 8 32 128 512 2048

Im
pr

ov
em

en
t F

ac
tor

Number of Columns

BC-SPUP
RWG-UP

Multi-W

Figure 6. Latency Comparison.

0

100

200

300

400

500

600

700

800

2 8 32 128 512 2048

Ba
nd

wi
dth

 (M
B/

s)

Number of Columns

Generic
BC-SPUP
RWG-UP

Multi-W

0

0.5

1

1.5

2

2.5

3

3.5

4

2 8 32 128 512 2048

Im
pr

ov
em

en
t F

ac
tor

Number of Columns

BC-SPUP
RWG-UP

Multi-W

Figure 7. Bandwidth Comparison.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

2K 4K 8K 16K 32K 64K 128K

La
ten

cy
 (u

s)

Number of Integers in the Last Block

Generic
BC-SPUP
RWG-UP

Multi-W

Figure 9. MPI Alltoall Performance.

0

50

100

150

200

250

300

350

400

450

2 8 32 128 512 2048

Ba
nd

wi
dth

 (M
B/

s)

Number of Columns

No Seg Unpack
Seg Unpack

Figure 10. Effects of Segment Unpack.

cesses. The number of integers in the last block varies from
2048 to 131072, as shown in the x-axis. The block sizes
increase exponentially from 4 bytes to the largest block size
from the first block to the last block. For example, when
the number of integers in the last block is 8192, the block
sizes vary from 4 bytes to 32768 bytes. We can see that all
BC-SPUP, RWG-UP and Multi-W schemes outperform the
Generic scheme. BC-SPUP gives an improvement factor of
minimum 1.2, maximum 1.5, and average 1.3. RWG-UP
gives an improvement factor of minimum 1.2, maximum
1.4, and average 1.3. Multi-W gives an improvement factor
of minimum 1.8, maximum 2.1, and average 2.0. For this
datatype, it can be observed that Multi-W is a good choice.

Measurements for other collective operations, which
could not be presented in this paper due to space limita-
tion, have shown similar results as we observed in the test
of MPI Alltoall [26].

6.4. Effects of Segment Unpack
To quantify the effects of segment unpack in the RWG-

UP scheme, we disabled the unpack trigger in each seg-
ment. Then, the receiver begins to unpack until the whole
datatype message arrives. It can be expected that the seg-

ment unpack gives us better performance due to the overlap
between communication and unpacking. We used the afore-
mentioned vector bandwidth test to quantity the effects of
segment unpack. Figure 10 shows that a factor of 1.3 im-
provement in bandwidth can be achieved using the segment
unpack.

6.5. Effects of List Descriptor Post
As mentioned in Section 4.3, we have two methods to

post a list of RDMA write descriptors: single post many
times and list post once. We evaluated the vector band-
width test on these two methods of the Multi-W scheme.
Figure 11 shows that the list post offers improvement with
a maximum factor of 2.0 and a minimum factor of 1.2 over
the single post. The average improvement factor is 1.6. This
has two implications. First, posting descriptor is costly and
we expect InfiniBand vendors to further optimize it. Sec-
ond, list descriptor post is a good extension and should be
supported.

6.6. Effects of Buffer Usage
Buffer usage has a great impact on MPI communica-

tion performance [13]. Performance achieved in schemes

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

�

���

���

���

���

���

���

���

	��

��

� � �� �� ��� ����

��������	�
�����

�
�
�
�
�
��
��
��
�
�
�
�

�

���

�

���

�

���

��
�
�
�
�
�
�
�
�
��
�
�
�
��
�

�����

���

���������������

Figure 11. Effects of List Descriptor Post.

we discussed has different dependency with buffer usage,
for either application buffers or MPI internal buffers. Par-
ticularly, as shown in Section 2.2, the pack/unpack buffers
used in the Generic scheme are dynamically allocated and
potentially change in datatype communication operations.
It is highly probable that memory registration is necessary
for each datatype communication. The BC-SPUP scheme
uses a pre-registered buffer pool to reduce the impact of
dynamic memory allocation and registration to some ex-
tent. In the RWG-UP scheme, the unpack buffer is also
pre-registered. However, both schemes will need to stall
communication when the buffer pool is used up or register
more buffers. Both RWG-UP and Multi-W schemes regis-
ter user buffers. Their performance heavily depends on user
buffer usage patterns. For example, if an application keeps
using different buffer in each operation, the registration be-
comes necessary. To show the buffer usage effect, we con-
ducted the vector latency test in a worst scenario. That is, if
a scheme needs an internal buffer, the internal buffer is al-
located, registered, and deregistered on-the-fly; if a scheme
uses user buffers directly, the user buffers are different, dy-
namic registration and deregistration are included.

Figure 12 shows the worst latencies for each scheme.
When the number of columns is less than 512, both RWG-
UP and Multi-W schemes perform very poor. This is be-
cause they need to register and deregister the whole user
array (registering each block is even more costly in this
case [28]), while Generic and BC-SPUP only register and
deregister buffers with the real data size. The memory regis-
tration and deregistration costs dominate their performance.
When the number of columns increases, the difference in
the costs of registration and deregistration between these
schemes decreases. While the memory copy costs catch up,
both RWG-UP and Multi-W perform better than Generic
due to reduced memory copies. In this test, BC-SPUP al-
ways performs better than Generic. Since they both have
same registration and deregistration costs, the benefits com-
pletely come from the overlap between packing, commu-
nication, and unpacking due to the segment pack/unpack
technique.

7. Related Work
Our work is related to previous studies in the following

areas.

Improving datatype processing system: Gropp et al. [8]
have provided a taxonomy of MPI derived datatypes accord-

0

1000

2000

3000

4000

5000

6000

4 8 16 32 64 128 256 512 1024 2048

La
ten

cy
 (u

s)

Number of Columns

Generic
BC-SPUP
RWG-UP

Multi-W

Figure 12. Latency Comparison in the Worst
Case of Buffer Usage.

ing to their memory access patterns and described how to
efficiently implement these patterns. Träff et al. have de-
scribed a technique, called flattening on the fly, for improv-
ing the datatype processing system [11]. Ross et al. [21]
have designed a reusable datatype-processing component
for the MPICH2 implementation [1]. This component can
be used in our implementations to further improve perfor-
mance as our future work.
Optimizing packing and unpacking procedures: Byna et
al. [4] have presented a technique which selects an appro-
priate packing algorithms with respect to the architecture-
specific parameters and the datatype memory access pat-
terns. Recently, MPICH2 [1] has begun to deploy segment
pack and unpack in its implementation. The Los Alamos
Message Passing Interface (LA-MPI) system [7] has used
shared memory regions as pack and unpack buffers in its
datatype communication path.
Taking advantage of network features to improve non-
contiguous data communication: In [25], Worringen et
al. have presented a direct copy technique to improve per-
formance of datatype communication using shared mem-
ory region provided by the SCI network. In [28], we have
demonstrated the benefits of using RDMA Gather/Scatter
operations to support noncontiguous file access in PVFS
over InfiniBand. Only the case in which buffers on the I/O
server side are always contiguous is discussed.

None of these previous work discusses and analyzes the
benefits of segment pack and unpack. Issues to register
and deregister pack/unpack buffers on RDMA-capable net-
works are not addressed yet. Furthermore, using RDMA
operations to reduce memory copies in datatype communi-
cation and its associated design issues are also not addressed
in these previous work.

8. Conclusions and Future Work
In this paper, we systematically study two main types of

approach for MPI datatype communication: Pack/Unpack-
based approaches and Copy-Reduced Approaches on the
InfiniBand network. Along the first type of approach, a
Buffer-Centric Segment Pack/Unpack (SPUP) scheme is
proposed to overlap packing, communication and unpack-
ing in datatype communication and reduce memory regis-
tration and deregistration costs. Along the second type of
approach, we propose three schemes: RDMA Write Gather

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

with Unpack (RWG-UP), Pack with RDMA Read Scatter
(P-RRS), and Multiple RDMA Writes (Multi-W). The main
idea behind these schemes is to use RDMA operations to
reduce and/or eliminate packing and unpacking in datatype
communication.

Three of these four schemes, BC-SPUP, RWG-UP, and
Multi-W, have been implemented and evaluated in MVA-
PICH over InfiniBand. Performance results with both point-
to-point and collective benchmarks show significant per-
formance improvement can be attained compared to the
generic pack/unpack scheme.

We also notice that these schemes perform differently in
different cases. We propose a method which dynamically
chooses an appropriate scheme to fit a given datatype com-
munication and to achieve the best performance. We are
working on the implementation of this selection method.
We plan to integrate the implementation into MVAPICH
and release it publicly after we have more application level
tests and performance tuning.

Acknowledgments
We would like to thank David Ashton, Darius Buntinas, Rob

Ross and Neill Miller at Argonne National Laboratory for MPI de-
rived datatype discussion with us. We are also thankful to nowlab
fellows, Dr. Hyun-Wook Jin, Jiuxing Liu, Weikuan Yu and Amith
Mamidala or their helpful comments on the paper draft. We also
thank the anonymous reviewers for many valuable comments.

References
[1] Argonne National Laboratory. MPICH2 Release 0.94.

http://www-unix.mcs.anl.gov/mpi/mpich2/,
August 2003.

[2] M. Ashworth. A Report on Further Progress in the Devel-
opment of Codes for the CS2. In Deliverable D.4.1.b F.
Carbonnell (Eds), GPMIMD2 ESPRIT Project, EU DGIII,
Brussels, 1996.

[3] D. H. Bailey, E. Barszcz, L. Dagum, and H. Simon. NAS
Parallel Benchmark Results. Technical Report 94-006,
RNR, 1994.

[4] S. Byna, X.-H. Sun, W. Gropp, and R. Thakur. Improving
the Performance of MPI Derived Datatypes by Optimizing
Memory-Access Cost. In Proceedings of the IEEE Interna-
tional Conference on Cluster Computing, 2003.

[5] P. Ezolt. A Study in Malloc: A Case of Excessive Minor
Faults. In Proceedings of the 5th Annual Linux Showcase
and Conference. USENIX Association, 2001.

[6] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale,
D. Q. Lamb, P. MacNeice, R. Rosner, and H. Tufo. FLASH:
An Adaptive Mesh Hydrodynamics Code for Modelling As-
trophysical Thermonuclear Flashes. Astrophysical Journal
Suppliment, 131:273, 2000.

[7] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai,
R. Minnich, C. E. Rasmussen, L. Dean Risinger, and M. W.
Sukalski. A Network-Failure-tolerant Message-Passing sys-
tem for Terascale Clusters. In Proceedings of the 2002 In-
ternational Conference on Supercomputing, June 2002.

[8] W. Gropp, E. Lusk, and D. Swider. Improving the Perfor-
mance of MPI Derived Datatypes. In MPIDC, 1999.

[9] H. Tezuka and F. O’Carroll and A. Hori and Y. Ishikawa.
Pin-down Cache: A Virtual Memory Management Tech-
nique for Zero-copy Communication. In 12th Int. Parallel
Processing Symposium, March 1998.

[10] J. L. Träff, H. Ritzdorf and R. Hempel. The Implementation
of MPI–2 One-sided Communication for the NEC SX. In
Proceedings of Supercomputing, 2000.

[11] J. L. Träff, R. Hempel, H. Ritzdorf and F. Zimmermann.
Flattening on the Fly: Efficient Handling of MPI Derived
Datatypes. In PVM/MPI 1999, pages 109–116, 1999.

[12] Lawrence Berkeley National Laboratory. MVICH: MPI for
Virtual Interface Architecture, August 2001.

[13] J. Liu, B. Chandrasekaran, J. W. W. Jiang, S. Kini, W. Yu,
D. Buntinas, P. Wyckoff, and D. K. Panda. Perfor-
mance Comparison of MPI Implementations over Infini-
Band Myrinet and Quadrics. In Supercomputing 2003: The
International Conference for High Performance Computing
and Communications, Nov. 2003.

[14] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High
Performance RDMA-Based MPI Implementation over In-
finiBand. In 17th Annual ACM International Conference on
Supercomputing, June 2003.

[15] Los Alamos National Laboratory. The ASCI Blue
Benchmarks. http://www.llnl.gov/asci-
benchmarks/.

[16] Mellanox Technologies. Mellanox InifniBand Technologies.
http://www.mellanox.com.

[17] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard, Mar 1994.

[18] Message Passing Interface Forum. MPI-2: Extensions to the
Message-Passing Interface, Jul 1997.

[19] Network-Based Computing Laboratory. MVA-
PICH: MPI for InfiniBand on VAPI Layer.
http://nowlab.cis.ohio-state.edu/
projects/mpi-iba/index.html, January 2003.

[20] R. Reussner, J. L. Träff, and G. Hunzelmann. A Benchmark
for MPI Derived Datatypes. Lecture Notes in Computer Sci-
ence, 1908:10+, 2000.

[21] R. Ross, N. Miller, and W. Gropp. Implementing Fast
and Reusable Datatype Processing. In EuroPVM/MPI, Oct.
2003.

[22] R. Ross, D. Nurmi, A. Cheng, and M. Zingale. A Case Study
in Application I/O on Linux Clusters. In SC2001, Nov. 2001.

[23] R. Thakur and W. Gropp. Improving the Performance of
Collective Operations in MPICH. In EuroPVM/MPI, Oct.
2003.

[24] W. Gropp and E. Lusk and N. Doss and A. Skjellum. A
High-Performance, Portable Implementation of the MPI,
Message Passing Interface Standard.

[25] J. Worringen, A. Gaer, F. Reker, and T. Bemmerl. Exploiting
Transparent Remote Memory Access for Non-Contiguous-
and One-Sided-Communication. In Workshop on Commu-
nication Architecture for Clusters 2002 (in conjunction with
IPDPS), April 2002.

[26] J. Wu, P. Wyckoff, and D. K. Panda. High Perfor-
mance Implementation of MPI Derived Datatype Commu-
nication over InfiniBand . Technical Report, OSU-CISRC-
10/03-TR58. http://nowlab.cis.o hio-state.edu/projects/mpi-
iba/, Oct. 2003.

[27] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over InfiniBand:
Design and Performance Evaluation. In the 2003 Interna-
tional Conference on Parallel Processing (ICPP 03), Oct.
2003.

[28] J. Wu, P. Wyckoff, and D. K. Panda. Supporting Efficient
Noncontiguous Access in PVFS over InfiniBand. In Pro-
ceedings of the IEEE International Conference on Cluster
Computing, 2003.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

