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Abstract

I/O is quickly emerging as the main bottleneck limiting
performance in modern day clusters. The need for scalable
parallel I/O and file systems is becoming more and more
urgent. In this paper, we examine the feasibility of lever-
aging InfiniBand technologies to improve I/O performance
and scalability of cluster file systems. We use PVFS as a
basis for exploring these features.

We design and implement a PVFS version over Infini-
Band by taking advantage of InfiniBand features and resolv-
ing many challenging issues. In this paper, we design and
test: a transport layer customized for the PVFS protocol by
trading transparency and generality for performance, buffer
management for flow control and efficient memory registra-
tion and deregistration, and communication management
for reducing network congestion and achieving differenti-
ated services.

Compared to a PVFS implementation over standard
TCP/IP on the same InfiniBand network, our implementa-
tion offers three times the bandwidth if workloads are not
disk-bound and 40% improvement in bandwidth in the disk-
bound case. Client CPU utilization is reduced to 1.5% from
91% on TCP/IP.

1 Introduction
Cluster systems are increasingly becoming a mainstream

platform for parallel computing in various application do-
mains. Out of the latest Top 500 Supercomputers, 93 sys-
tems are clusters [14]. Cluster systems are now present at all
levels of performance, due to the increasing performance of
commodity processors, memory and network technologies.
However, in modern day clusters, I/O is quickly emerging
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as the main bottleneck limiting performance. The need for
scalable parallel I/O and file systems is becoming more and
more urgent. As well, the use of standards in the hardware
components and in the software used in the cluster is also
becoming not just convenient but a necessity to ensure soft-
ware reuse.

There has been a significant amount of work on parallel
and cluster file systems, which has repeatedly demonstrated
that a viable infrastructure consists of commodity storage
units connected with commodity network technologies, to
provide high performance and scalable I/O support in clus-
ter systems [22, 29, 2, 28, 34, 13, 6]. The PVFS (Parallel
Virtual File System) [6] is a good example of such an ar-
chitecture and a leading cluster file system for parallel com-
puting in cluster systems. It addresses the need of high per-
formance I/O on low-cost Linux clusters. Each PVFS file is
striped across multiple disks on different I/O nodes. Data is
transferred between compute nodes and I/O units directly.
The basic idea behind PVFS is to aggregate disk and net-
work performance to achieve high throughput and scalable
concurrent file access.

However, the performance of network storage systems
is often limited by overheads in the I/O path, such as
memory copying, network access costs, and protocol over-
head [1, 27, 24, 19]. Emerging network architectures such
as Virtual Interface (VI) Architecture [9] and InfiniBand Ar-
chitecture [15] create an opportunity to address these issues
without changing fundamental principles of production op-
erating systems. Two common features shared by these net-
works are: user-level networking and remote direct memory
access (RDMA). User-level networking allows applications
to directly and safely access the network interface without
going through the operating system. RDMA allows the net-
work interface to transfer data between local and remote
memory buffers without operating system and processor in-
tervention by using DMA engines.

InfiniBand has been recently standardized by industry
to design next generation high-end clusters for both data-



center and high performance computing. Since it is targeted
for both storage I/O and Inter-Processor Communication
(IPC), InfiniBand offers additional features such as multi-
ple transport services, atomic operations, virtual lanes, and
service levels with hardware support to design high perfor-
mance, highly scalable, and highly available systems. In our
previous work [20], we have demonstrated that InfiniBand
can offer high performance to parallel applications that use
message passing.

In this paper, we examine the feasibility of leveraging In-
finiBand technologies to improve I/O performance and scal-
ability of cluster file systems. We use PVFS as a basis for
exploring these features and focus on a number of challeng-
ing issues that are important for cluster file systems. First,
we propose a modular architecture for designing PVFS over
InfiniBand. This architecture takes full advantages of In-
finiBand features. Second, we focus on improving the I/O
path from the compute node to the I/O server node with
multiple optimization techniques. Third, we focus on ef-
ficient memory registration and deregistration with respect
to I/O intensive applications and in particular applications
with noncontiguous I/O accesses [7]. Fourth, we develop
schemes to provide fair and dynamic buffer sharing in I/O
servers that service a large number of concurrent requests.
Finally, we implement PVFS over InfiniBand by taking ad-
vantage of user-level networking and RDMA. We evaluate
our implementation using PVFS and MPI-IO benchmarks
and applications. We compare its performance with that of
unmodified PVFS over IBNice [23], a TCP/IP implementa-
tion on InfiniBand.

This work contains several research contributions. Pri-
marily, it takes the first step toward understanding the role
of the InfiniBand architecture in next-generation cluster file
systems. Our results show that:

1. The capabilities of user-level communication and
RDMA can improve all performance aspects of PVFS.
Compared to a PVFS implementation over IBNice, our
implementation offers a factor of three improvement in
throughput. Utilization decreases from 91% with IB-
Nice to 1.5% in our native implementation.

2. A transport layer based on InfiniBand user-level pro-
gramming interface requires careful design regarding
aspects of flow control, buffer management, and com-
munication strategy selection.

3. Optimizations in small data transfer, pipelined bulk
data transfer, and memory management for noncon-
tiguous I/O can achieve significant performance gains.

The rest of the paper is organized as follows. We first
give a brief overview on both PVFS and InfiniBand in sec-
tion 2. Section 3 presents the design of PVFS over In-
finiBand. Section 4 describes our performance optimiza-
tions. Implementation is presented in section ??. The per-

formance results are presented in section 6. Finally we ex-
amine related work in section 7 and draw our conclusions
and future work in section 8.

2 Overview of PVFS and InfiniBand
2.1 PVFS Overview

PVFS is a leading parallel file system for Linux cluster
systems. It was designed to meet increasing I/O demands
of parallel applications in cluster systems. As shown in Fig-
ure 1, a number of nodes in a cluster system can be config-
ured as I/O servers and one of them is also configured to
be the metadata manager. It is possible for a node to host
computations while serving as an I/O node.
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Figure 1. Typical PVFS setup.
PVFS achieves high performance by striping files across

a set of I/O server nodes to achieve parallel accesses and
aggregate performance. PVFS uses the native file system
on the I/O servers to store individual file stripes. An I/O
daemon runs on each I/O node and services requests from
compute nodes, particularly read and write requests. Thus,
data is transferred directly between I/O servers and compute
nodes.

A manager daemon runs on a metadata manager node.
It handles metadata operations involving file permissions,
truncation, file stripe characteristics, and so on. Metadata
is also stored in the local file system. The metadata man-
ager provides a clusterwide consistent name space to appli-
cations. In PVFS, the metadata manager does not partici-
pate in read/write operations.

PVFS supports a set of feature-rich interfaces, including
support for both contiguous and noncontiguous accesses in
both memory and files [7]. PVFS can be used with multiple
APIs: a native API, the UNIX/POSIX API, MPI-IO [31],
and an array I/O interface called the Multi-Dimensional
Block Interface (MDBI). The presence of multiple popu-
lar interfaces contributes to the wide success of PVFS in
both industry and university settings. Work is underway on
the next major revision of PVFS which involves a complete
design of all major subsystems.

2.2 InfiniBand Overview
The InfiniBand Architecture (IBA) [15] defines a System

Area Network (SAN) for interconnecting both processing
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nodes and I/O nodes. It provides a communication and man-
agement infrastructure for inter-processor communication
and I/O. InfiniBand Architecture has built-in QoS mecha-
nisms which provide virtual lanes on each link and define
service levels for individual packets.

In an InfiniBand network, processing nodes and I/O
nodes are connected to the fabric by Channel Adapters
(CA). There are two kinds of these: Host Channel Adapters
(HCA) and Target Channel Adapters (TCA). HCAs sit on
processing nodes and their semantic interface to consumers
is specified in the form of InfiniBand Verbs. TCAs connect
I/O nodes to the fabric and have interfaces to consumers that
are implementation specific and thus not defined in the In-
finiBand specification. Channel Adapters usually have pro-
grammable DMA engines with protection features.

The InfiniBand communication stack consists of differ-
ent layers. The interface presented by Channel Adapters to
consumers belongs to the transport layer. A queue-based
model is used in this interface. A Queue Pair consists of
two queues: a send queue and a receive queue. The send
queue holds instructions to transmit data and the receive
queue holds instructions that describe where received data
is to be placed. The completion of requests is reported
through Completion Queues (CQs). Applications can check
the completion queue to see if any request has been finished.

InfiniBand Architecture supports both channel and mem-
ory semantics. In channel semantics, send/receive opera-
tions are used for communication. A receiver must explic-
itly post a descriptor to receive messages in advance. In
memory semantics, RDMA write and RDMA read opera-
tions are used. RDMA operations enable the initiator to
write data into or read data from memory buffers of the peer
side without intervention of the peer side.

3 Design of PVFS over InfiniBand
In this section, we describe the design of PVFS over In-

finiBand. First, we define a general software architecture
of PVFS based on InfiniBand, then we show the design of
each component. We mainly focus on the PVFS transport
layer, buffer manager, and communication manager. Other
components are currently undergoing redesign for the sec-
ond version of PVFS, but are not specific to the network
and are not discussed further here, including the file access
manager [5] and request manager [26].

3.1 PVFS Architecture
Figure 2 shows the PVFS software architecture. Since

the metadata server is a simpler case of the I/O server, we
only show the architecture of the client and the I/O server
here.

There are six modules in the PVFS architecture. A buffer
manager, a communication manager, and a PVFS transport
layer reside on both the client and server sides. The PVFS

library is used by the client to generate requests. A request
manager and a file access manager exist on the server side
to process client requests.
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Figure 2. PVFS Software Architecture.
The transport layer transfers data using user-level Infini-

Band primitives. The buffer manager supplies the trans-
port layer buffers and also supplies buffers to the file access
manager for file accesses. The request manager receives
requests and decides in what order to service requests, us-
ing information supplied by the file access manager. The
communication manager chooses communication mecha-
nisms and schedules data transfers. In this paper, we focus
on the transport layer, buffer manager, and communication
manager, which become more complicated when designing
PVFS over InfiniBand as compared to the original design of
PVFS over TCP/IP.

3.2 PVFS Transport Layer
The PVFS transport layer provides data, metadata, and

control channels between PVFS compute nodes, I/O server
nodes, and the metadata manager. In this section, we first
analyze the characteristics of various types of messages in
PVFS, then we choose appropriate communication schemes
for them, respectively.

3.2.1 Messages and Buffers in PVFS
Messages in PVFS can be categorized as follows:

1. Request messages: A request message is sent by the
compute nodes to the servers (both I/O server nodes
and the metadata manager server) to direct them to ini-
tiate operations such as read, write, and lookup. The
manager node also uses a request message to inform
the I/O server nodes of metadata management opera-
tions if needed.

2. Reply messages: A reply message is sent by a server
to inform the request initiator of completion of a re-
quest. It usually contains the status of operations and
related information such as the number of bytes read
or written.

3. Data messages: Data messages are used to transfer
payload for file reads and writes.
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4. Control messages: Control messages are internal
messages in the PVFS system. Compute nodes, I/O
server nodes and the metadata server all use control
messages to exchange information such as flow con-
trol to maintain PVFS protocols. Some control infor-
mation may be exchanged implicitly using request and
reply messages.

There are two types of buffers:

1. Internal buffers: Internal buffers are allocated by the
PVFS system. They are pinned when a connection is
established, remain active for a long period of time,
and on the servers they can be used to service multiple
clients.

2. RDMA buffers: RDMA buffers are used to achieve
zero-copy data transfer between the compute nodes
and the I/O server nodes. On the client side, RDMA
buffers are provided by the application when it initi-
ates read and write operations. On the I/O server side,
RDMA buffers are allocated to stage data in memory
before it moves to the disk or to the network.

3.2.2 Communication Choices
InfiniBand provides both reliable and unreliable connec-
tion and datagram services. Since PVFS requires a reliable
transport layer, we focus only on the reliable connection
service.

In reliable connection service, InfiniBand offers both
Send/Recv operations and both read and write RDMA oper-
ations. The initiator can choose for each operation whether
to generate a completion event. Send/Recv operations and
RDMA Write with Immediate operations consume receive
descriptors and result in Solicited and Unsolicited comple-
tion on the receive side [15]. These features provide a flex-
ible design space and the opportunity to optimize perfor-
mance. However, the obvious question which arises is how
to choose efficient communication operations and comple-
tion schemes for each of the message types in PVFS.

Generally speaking, each message type can use either
send/recv or RDMA operation; however, a better fit can
be obtained for particular message types according to how
well they align with the characteristics of the corresponding
communication operations. Table 1 lists message chracter-
istics and suitable communication choices.

The completion of Send, RDMA Write and Read oper-
ations on the initiator side is somewhat complicated by the
need to drive the message progress engine. It can be ex-
pected that better performance can be achieved by avoiding
an explicit completion notification; however, this notifica-
tion provides an easy way to manage resources and quickly
check the status of communication. For example, consider-
ing a PVFS file write, if the I/O server uses RDMA Read
operations to bring data from the compute node buffer, the
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Figure 3. Server-based RDMA Mechanism.

server would like to know when the RDMA Reads are com-
plete so that it can initiate file write operation to move the
data to disk, but it is not necessary for every RDMA Read
operation to generate completion notification. Therefore, in
our design, every send generates a completion and the last
RDMA operation in a functional message also generates a
completion.

3.2.3 Message Transfer Mechanisms
As discussed in 3.2.2, appropriate communication opera-
tions must be chosen for each message type. In this subsec-
tion, we show how to use them to transfer messages. There
are four basic message transfer mechanisms: Send/Recv
mechanism, server-based RDMA mechanism, client-based
RDMA mechanism, and hybrid RDMA mechanism. We
elaborate these mechanisms and how to map PVFS oper-
ations to them.

In Send/Recv mechanism, messages are sent from send
internal buffers to receive internal buffers. Request and con-
trol messages are sent by this mechanism. Data messages
also can be sent using this mechanism, at the cost of some
memory copies. Send/Recv message transfer is flow con-
trolled as described in section 3.3.1.

In server-based RDMA mechanism, RDMA operations
are initiated only by the I/O servers. The clients are respon-
sible for providing RDMA buffer information. Figures 3(a)
and 3(b) show the operations involved in read and write
transfers, respectively. Since client RDMA buffer informa-
tion can be provided along with the request messages, the
I/O servers can initiate RDMA operations asynchronously
according to when they can be scheduled.

Figures 4(a) and 4(b) show the operations involved to
perform reads and writes when initiated using RDMA oper-
ations from the client. Generally speaking, the client-based
RDMA mechanisms require the server to send a control
message containing its RDMA buffer information before
data transfer can begin. It also requires that the client no-
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Table 1. Communication Choices

Characteritics Choices
Message Unexpected Size In-place

processing
Immediate
Attention

Operation Completion Comments

Request Unexpected Short Yes Yes Send/Recv Solicited
Reply Expected Short Yes Yes Send/Recv or

RDMA Write
Solicited Send/Recv is simpler than

RDMA Write with Imme-
diate data.

Control Unexpected Short Yes Yes Send/Recv Solicited
Data Expected Variable

sizes
Zero-copy
expected

No RDMA Read or
Write

No Tradeoff between zero-
copy and non zero-copy,
discussed in 4.1.
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tify the servers when RDMA operations are finished. In
the PVFS Read case, this needs a separate control message.
In the PVFS Write case, this notification may be carried
out using RDMA Write with Immediate data on the last
RDMA Write operation, if the 64-bit immediate data is suf-
ficient to carry the necessary state information. It can be
seen that more control messages are usually needed in the
client-based RDMA mechanism, compared to the server-
based RDMA mechanism.
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RDMA read is a round-trip operation and its perfor-
mance is usually lower than that of RDMA Write, as shown

in Figure 5. Therefore, one can consider a hybrid RDMA
mechanism, wherein only RDMA Write operations are
used. In the hybrid mechanism, a PVFS read is designed
with server-based RDMA Write as shown in Figure 3(a) and
a PVFS write is designed with client-based RDMA Write
as shown in Figure 4(b). This mechanism is a common
method to design file and storage systems on networks that
do not support the RDMA Read operation [22, 34]. Us-
ing client-based RDMA Write to design PVFS write can
take advantage of higher performance of InfiniBand RDMA
Write operations; however, there are several disadvantages.
First, the server needs to dedicate sufficient buffer space to
each client. If the client exits abnormally, the server cannot
reuse these buffers. Second, extra control messages may be
required to avoid the loss of scalability and resource con-
sumption associated with this mechanism. For example, a
certain number of buffers can be registered and assigned to
each client and the registration information can be cached
on the client. However, larger message transfers will re-
quire more space than had been preallocated forcing the use
of more control messages to synchronize use of the finite
buffer space. Third, as mentioned in [21], using server-
based RDMA Read to design a PVFS write permits a nat-
ural flow control algorithm between the network and disks
as the server will fetch new data from the network no faster
than it can write it to disk. This is not possible in the hybrid
mechanism.

In our design, we use the following combinations of the
above mechanisms. Send/Recv is used to transfer request,
control and reply messages. Server-based RDMA Write
is used for PVFS read operations. Server-based RDMA
Read is used to implement large PVFS write operations, but
client-based RDMA Write is used for small PVFS writes,
as discussed in section 4.1.

3.2.4 Polling or Interrupt on Events
InfiniBand provides an aggregated event notification mech-
anism for scalable event notification and delivery. A single
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structure, Completion Queues, is used to notify and deliver
events for a large number of connections. Events such as ar-
rival of a client request, or completion of a data transfer, can
be efficiently detected by entries in one or more Completion
Queues. There are two basic methods to catch an event.
One is that applications explicitly poll related Completion
Queues to retrieve interested events. Another one is to in-
voke pre-registered event handlers to notify applications of
events by interrupts. In this method, applications can sleep
and relinquish CPU when waiting for an event. Polling is
usually CPU intensive; however, it offers better response
latency. While servicing an interrupt always increases the
latency, it does consume fewer CPU cycles, particularly if it
is necessary to poll for a long time before the event arrives.

Important goals when designing PVFS over InfiniBand
are to minimize CPU overhead on the client side, minimize
response latency for short transfers, and maximize through-
put for large transfers. In our design, notification of comple-
tion of sending request messages on the client side is done
using polling and notification of completion of incoming re-
ply messages with interrupts. On the server side, all event
notification is done with polling, as is appropriate for a ded-
icated machine.

3.3 Buffer Management

A buffer manager provides buffers to the PVFS trans-
port layers. Buffers are either internal buffers or RDMA
buffers. There are three main tasks in a buffer manager.
First, flow control on internal buffers is to ensure that ev-
ery message sent by a Send operation has a receive buffer
posted on the receiver side. Second, it should provide effi-
cient memory registration and deregistration operations for
RDMA buffers. Third, a buffer manager should provide fair
and dynamic sharing to buffer consumers. This task is par-
ticularly important in the I/O server.

3.3.1 Flow Control on Internal Buffers
Internal buffer management is a well-discussed issue in the
literature [16, 18]. A small set of internal buffers are allo-
cated and pinned on both sides of a connection. Each con-
nection has a separate pool of internal receive buffers. To
ensure that an incoming message can be put in an internal
receive buffer, a credit-based flow control mechanism is de-
ployed on a per-connection basis. At the beginning, some
number of receive descriptors, each associated with an in-
ternal receive buffer, are posted for each connection. Then,
the number of currently posted receive buffers is advertised
by flow control updates, which can be piggybacked on other
messages or sent as a control message. This information can
also be exchanged implicitly in the flow of matched request
and response message pairs.

3.3.2 Server RDMA Buffer Management
Server RDMA buffers are used to receive data from clients
and to read data from files. These buffers are effectively
used to bridge the performance gap between network and
disk. Due to highly concurrent requests and possible large
request sizes, a significant portion of the total memory
must be allocated as RDMA buffers on a dedicated server.
Clearly, the server can reuse these buffers for different re-
quests. Thus, all these regions can be pre-registered at
startup. The I/O server then keeps using them to service
client requests. A slightly more complicated solution is that
the I/O server may dynamically register or deregister some
regions. For example, if the working set of client requests
is not large enough, the I/O server can deregister some re-
gions which are seldom used. This may improve perfor-
mance since the system I/O cache competes for memory.
The fewer buffers that are registered, the more buffers that
can be used for I/O cache and other purposes. Even with this
dynamics, it can be expected that the frequency of memory
registration and deregistration is low in the I/O server side.
Thus, efficient memory registration and deregistration is not
a huge issue.

The more important function for a server buffer manager
is to provide a fair and dynamic buffer sharing among all
clients. This task is not difficult in PVFS over TCP/IP. First,
TCP/IP provides a stream communication, the server can re-
ceive and send a large data multiple times using a smaller
buffer. Second, the client side can stop sending data if there
is no space left in the socket receive buffer of the server side.
Third, select provides a mechanism to notify the server of
data arrival before data placement. In the PVFS transport
layer based on InfiniBand, all data is transferred as whole
messages, not as bytes in a stream. Buffers are also sup-
plied explicitly. Message transfers are thus atomic, and data
placement and data arrival are not separated as they are in
TCP/IP. Therefore, explicit buffer assignment is needed in
PVFS over InfiniBand.

Another issue is that transfer sizes for requests are dif-
ferent. This variability requires that the buffer manager be
able to supply different sizes of virtually contiguous buffers.
Avoiding fragmentation is important in this scenario.

The server buffer manager in our design works as fol-
lows. First, all RDMA buffers are allocated and organized
in zones, where each zone has buffers of the same size.
There is a list of RDMA buffers with size of 64 Kbytes, a
list of RDMA buffers with size of 128 Kbytes, up to a list of
RDMA buffers with size of 2 Mbytes, which is the biggest
zone size. Given a particular transfer size, we first look at
the corresponding zone list to try to get a contiguous buffer.
If there is no buffer available, the buffer may be chosen from
a bigger zone list. If there is no bigger buffer available, the
transfer will be chopped into small transfers using smaller
RDMA buffers. By this way, there is no dynamic fragmen-
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tation and it is usually possible to transfer data with a given
transfer size. Second, when a request is scheduled by the
request manager, a transfer size is chosen to take advantage
of potential overlap of communication and I/O. Buffers are
allocated from one or more zone lists and assigned to the
request. Then as parts of or the request complete, their as-
signed buffers are released back to the zone lists. This pol-
icy works well with PVFS, because the server is a single
thread and all file operations are blocking. If, in the future,
the server is multi-threaded and/or uses non-blocking file
operations, this buffer manager policy will change accord-
ingly.

3.3.3 Client RDMA Buffer Management
RDMA buffers in the client side are provided by PVFS ap-
plications. The client buffer manager is primarily respon-
sible for efficient registration and deregistration of these
memory regions. PVFS I/O applications require a large
number of I/O buffers which may be allocated no earlier
than when the request is issued. To reduce the cost of dy-
namic registration and deregistration, a pin-down cache [12]
is incorporated in the buffer manager. Pin-down cache de-
lays deregistration of registered buffers and caches their reg-
istration information. When these buffers are reused, their
registration information can be retrieved from pin-down
cache. This technique is quite effective when the amount
of buffer reuse is high. Further optimizations performed by
the client buffer manager are described in section 5.

3.4 Communication Management
This component is responsible for choosing an appropri-

ate communication mechanism for each message. It also
schedules data communication to reduce network conges-
tion and avoid delaying other traffic in the network. It is
capable of applying a service level to each message which
marks its priority as it moves through the network. The mo-
tivation for this module comes from three aspects.

First, as mentioned earlier, there are a large number of
options in InfiniBand data transport mechanisms for each
possible PVFS message type. One role of the communica-
tion manager is to make this decision according to param-
eters in the message, such as destination, message length,
and availability of remote buffer credits. Second, I/O traffic
and communication traffic share the same InfiniBand net-
work. A single I/O node must service requests from mul-
tiple clients and easily becomes a communication hot-spot.
This localized communication pattern can lead to a severe
form of congestion, which can seriously degrade the over-
all performance of the interconnect [11]. The situation be-
comes worse when the IO node performs RDMA operations
to transfer data for both read and write operations since all
data originates from the IO node. Careful arrangement of
communication operations can reduce congestion and effect

on other traffic. Third, InfiniBand provides virtual lanes and
service levels to offer different service. The communication
manager can assign service levels to messages according to
the related request requirement.

4 Optimizations in the PVFS Transport
Layer

In general, our experience shows that native InfiniBand
primitives can be instrumental in reducing overheads and
increasing bandwidth in the I/O path. We have also encoun-
tered a number of challenging issues in designing PVFS
over InfiniBand, including small data transfers and bulk
data transfers. To deal with these issues, we explore vari-
ous optimizations here and quantify their impact on perfor-
mance in Section 6.

4.1 Small Data Message Transfer
Recall that data messages are transferred with either

server-initiated or client-initiated RDMA operations. Ei-
ther way, application buffers must be registered before data
transfer. These buffers may also need to be deregistered af-
ter data transfer due to a limitation on total size of registered
buffers. For small data messages, the performance benefit
of zero-copy transfer may not offset the cost of memory
registration and deregistration. Two optimizations can be
applied to improve this situation in the case of small data
message transfers.

4.1.1 Inline Data Transfer
Data is first copied into internal buffers which are pre-
registered and then transferred by Send/Recv mechanism.
For PVFS write data, if they can fit in an internal buffer
with the request message, data and request are sent in one
message. Otherwise, following the request message, the re-
maining data are sent separately. For PVFS read data, the
server acts similarly. Data is sent either together with the
reply message or as a separate message. One copy on the
client side is then required to place the data. On the the
server a copy is not usually necessary because it can pro-
cess the request message in place. This technique has been
used elsewhere [10].

4.1.2 Fast RDMA Write
Figure 5 shows there is a significant performance difference
between RDMA Read and RDMA Write when the transfer
size is not large. This implies that using RDMA Write for
small data transfers is preferable if the benefit can offset the
overhead of doing so. Fast RDMA Write optimizes PVFS
write and read operations as follows.

To optimize small writes, the client does RDMA Write
to transfer data to the I/O server. However, as shown in Fig-
ure 4(b), two additional control messages are needed. To
avoid the first control message, a small set of RDMA buffers
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(called Fast RDMA buffers) are allocated and registered
when a connection is established. The buffer information is
cached on the peer side. Thus, the client can RDMA write
data directly into the Fast RDMA buffers on the server. We
use RDMA Write with Immediate data to avoid the second
control message. Furthermore, we add another interface,
check if registered, into our pin-down cache implementa-
tion. This call returns registration information if a buffer
happens to be cached. Otherwise, it returns NULL. Before
data transfer, the client calls check if registered to see if the
user buffer is registered. If so, Fast RDMA Write is car-
ried out between the registered user buffer and the server
Fast RDMA buffers. If not, the client first copies data into
its Fast RDMA buffers, and Fast RDMA Write is carried
out between the Fast RDMA buffers of both sides. In the
latter case, the request message can be combined with the
data message in one operation using one data segment. In
the former case, one RDMA Wirte with Immediate data can
be used, however, two data segments must be specified in
RDMA Write gather list, one for request and one for data.

To optimize small reads, the client again calls
check if registered first to find out whether the user buffer
is registered. If so, it sends to the server information on the
registered user buffer in the request message. Otherwise,
it supplies to the server a pointer to a Fast RDMA buffer.
Similarly, the reply message can be combined with the data
message in this case. Then, the server performs RDMA
Write as instructed. The client must copy data out of the
Fast RDMA buffer if the user buffer was not registered.

The number of Fast RDMA buffers per connection
needed on the server side is variable according to resource
availability. However, this number and the Fast RDMA
buffer size can become a hindrance to scalability in a large
system. In PVFS, since there is only one outstanding read
or write from each client, one Fast RDMA buffer for each
connection works well. Thus, scalability is not an issue. If
more than one outstanding request is allowed, as expected
in the next-generation design of PVFS, more Fast RDMA
buffers can offer better performance. However, flow con-
trol must be applied to ensure that future requests do not
overwrite earlier ones. The optimal Fast RDMA buffer size
should be decided by comparing the cost of memory regis-
tration and deregistration to the cost of copying. A similar
technique has been used on other networks without RDMA
Read support [21, 17].

4.2 Pipelined Bulk Data Transfer

Scientific applications frequently write large amounts of
data (100 MB to 10 GB), such as to perform checkpoints
or to output results. There are two major phases in each
I/O path: communication phase, where data is transfered
between client buffers and server buffers, and I/O phase,
where data is moved from server buffers to disk. Over-

lap between these two phases is necessary for high perfor-
mance in the case of large write (or read) requests. One way
to achieve communication and I/O overlap is to split large
transfers into multiple smaller transfers. For example, when
a client wants to read 100 MB from a server, the server can
read 1 MB, then start a 1 MB RDMA write operation to the
client, then repeat these two operations another 99 times.

In PVFS, the transfer size is usually the same as the stripe
size of the file due to the contiguity of client buffers and
server files. In cases where larger transfer units are possible,
the transfer size should be no more than half of the total size
to achieve good pipelining.

Pipelining communication and I/O also reduces mem-
ory pressure in I/O servers. The I/O server can use double
buffering to service concurrent requests. Thus, each request
only needs buffer space for two transfer sizes (2 MB), not
one buffer for the entire size (100 MB).

5 Efficient Support for List I/O
Another challenging issue we faced is to provide effi-

cient list I/O operations in PVFS over InfiniBand. The list
I/O interface provided by PVFS allows a set of buffers to be
used as read or write as destinations in memory on the client
and a set of offsets in the file on the server. This interface
offers efficient noncontiguous accesses in both memory and
file space [7]. For example, MPI-IO [31] uses this inter-
face to implement noncontiguous accesses using the MPI
DataType representation. Supporting list I/O efficiently in
PVFS is critical to user applications. In our design, we ap-
plied the small data transfer and pipelined bulk data transfer
optimizations discussed above to list I/O operations as ap-
propriate. However, there is still a performance problem
related to the registration of memory regions in list I/O.

This complication in list I/O may result in a large num-
ber of buffer registration and deregistration events, even
when using a registration cache. Considering the follow-
ing example as illustrated in Figure 6(a), assume a pro-
cess uses the upper corner 1024 � 768 subarray (sub1) in
a two-dimensional 2048 � 1536 array of characters as the
destination for a file read. There are 768 buffers, one for
each row, which are not contiguous with each other. If
these 768 buffers are registered individually through the
pin-down cache, it may result in serious performance prob-
lems, for many reasons. First, it results in high registra-
tion overhead, since it is likely that some of the individual
rows are not already pinned. Second, cache misses increase
because a large number of pin-down entries are needed for
each list I/O, perhaps causing some cached buffers to dereg-
ister. This not only increases the registration time for the list
I/O buffers for this operation, but also may require another
registration to repin frequently used buffers. Registration
cache thrashing may occur. Thus, reducing the number of
buffers needed to be registered as much as possible is criti-
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cal to alleviate these problems.

(1024,0)(0,0)

(0, 768)

Sub1 Sub2

Sub3 Sub4

(a) One Big Buffer (b) Three Big Buffers

(1024,768)

Figure 6. Examples of the List I/O Extended
Interface

Another observation we have on VI-networks [3] and In-
finiBand is that to register and deregister a large buffer once
is much more efficient than to register and deregister the
same size buffer in multiple small chunks. For example, it
takes 530 � s to register and deregister a 400 kB buffer, while
it takes 12 400 � s to register and deregister 100 buffers of
size 4 kB each on our InfiniBand testbed.

Based on these observations, we suggest a procedure to
reduce registration overheads in the case of list I/O opera-
tions. The first step is to concatenate buffers which are actu-
ally parts of the same allocation in process virtual memory
space. This can effectively reduce the number of registra-
tions. The trivial case is when all buffers in a list I/O oper-
ation are contiguous, with no holes, and can then obviously
be treated as one region. The more likely case issue is the
one illustrated in Figure 6(a). Holes between these buffers
may or may not have been allocated in the memory of the
process, and there is no guaranteed way to tell. The min-
core system call in some operating systems could be used
to query the status of individual pages, but the result is not
guaranteed accurate. More information is needed from the
application itself.

The second step in our optimization is to decide how
much of the buffer should be registered. Given that we
know that (some of) the individual components of the list
I/O are parts of a single contiguous virtual memory alloca-
tion, is it better to register the entire large allocation or just a
subset which covers the areas to be accessed in a list I/O? It
is likely true that we should prefer to perform a single reg-
istration of the entire allocation, given the observation on
how much faster that will be, and the chance that some part
of the registered area will be reused in later calls. However,
there is a limitation on the total size of registered buffers
as well as the number of registered buffers. Again, it is up
to the PVFS applications to specify the expected registered
length of a buffer by considering the access patterns of the
region.

To convey this information from the application, we pro-
pose an extension to the PVFS list I/O interface, which al-
lows PVFS applications to pass additional buffer informa-

tion for efficient memory registration:
pvfs read list(int fd,

int mem list count,
void * mem offsets[],
int mem lengths[],
void * allocation offsets[],
int allocation lengths[],
int file list count,
int64 t file offsets[],
int32 t file lengths[])

Two arrays are added as input parameters, shown in bold
above, to provide information on the actual allocations un-
derlying the memory regions passed in the call. For a buffer
listed in mem offsets, the address of the largest buffer to
which it belongs (the “parent buffer”) is specified in allo-
cation offsets. The length of the part of the parent buffer
which is expected to be registered is specified in alloca-
tion lengths. Clearly, this length must not be less than the
related length specified in mem lengths. For example, in
Figure 6(a) the parent buffer address is the initial address of
the whole two-dimensional array, and the allocation length
is the length of the array which covers all list buffers, i.e.
2048 � 767 � 768 bytes. The allocation lengths can also be
the whole length of the array if the application knows it is
beneficial to pin the entire array. These two additional pa-
rameters provide important information to the buffer man-
ager to achieve efficient memory registration and deregis-
tration. They also provide flexibility to PVFS applications.
Figure 6(b) demonstrates the case where list I/O is used for
buffers which come from different allocations in the pro-
cess memory space. If we had proposed that pvfs read list
be extended to assume a single contiguous allocation, this
usage model would no longer be available to applications.
Instead, PVFS applications can use these two new param-
eters to notify the buffer manager that list I/O buffers are
subsets of three different parent buffers, in this case.

This extended list I/O interface works well with MPI-IO
which uses MPI derived datatypes to achieve noncontigu-
ous accesses. If an access is contiguous in memory, only
one registration is needed. If an access is noncontiguous in
memory, for example, a process uses the subarray as shown
in Figure 6(a) as a derived Datatype to access a file, be-
fore calling a PVFS list I/O routine, the MPI-IO layer such
as ROMIO [31] can parse the corresponding datatype and
fill out appropriate values in the input parameters. This re-
sults in requiring only one registration in the common case
where a single initial buffer address is used for each list I/O
request.

Since the native PVFS interfaces are usually used in
other portable layers such as ROMIO, this extension will
not disturb end-user applications.
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6 Performance Results
We have implemented PVFS on our InfiniBand testbed

with designs described in Sections 3 and 4. Our imple-
mentation is based on PVFS version 1.5.6. The InfiniBand
interface is VAPI [23], which is a user-level programming
interface developed by Mellanox and compatible with the
InfiniBand Verbs specification. This section presents per-
formance results from a range of benchmarks on our im-
plementation of PVFS over InfiniBand. First, we quantify
that PVFS can take full advantages of InfiniBand features
to achieve high throughput, low CPU utilization, and high
scalability by comparing performance of our implementa-
tion with that of PVFS over IBNice [23], a TCP/IP imple-
mentation for InfiniBand. We use both PVFS and MPI-IO
micro-benchmarks as well as applications to carry out the
comparison. Then we examine the impact of system opti-
mizations on PVFS performance. Unless stated otherwise,
the unit megabytes (MB) in this paper is an abbreviation for
2 �
	 bytes, or 1024 � 1024 bytes.

6.1 Experimental setup
Our experimental testbed consists of a cluster system

consisting of 8 nodes built around SuperMicro SUPER
P4DL6 motherboards which include 64-bit 133 MHz PCI-
X interfaces. Each node has two Intel Xeon 2.4 GHz pro-
cessors with a 512 kB L2 cache and a 400 MHz front
side bus. The machines are connected with Mellanox
InfiniHost MT23108 DualPort 4x HCA adapter through
an InfiniScale MT43132 Eight 4x Port InfiniBand Switch.
The Mellanox InfiniHost HCA SDK version is thca-x86-
0.0.6-rc1-build-002. The adapter firmware version is fw-
23108-1.16.0000 5-build-001. Each node has a Seagate
ST340016A, ATA 100 40 GB disk. We used the Linux Red-
Hat 7.2 operating system.

6.2 Network and File System Performance
Table 2 shows the raw 4-byte one-way latency and band-

width of VAPI and IBNice. IBNice is a TCP/IP stack over
InfiniBand offered by Mellanox. The benchmark we used
for this purpose is ttcp, version 1.12-2, with a large socket
buffer size of 256 kB to improve IBNice performance. The
VAPI Send/Recv and RDMA Write performance is mea-
sured using the Mellanox perf main benchmark. The VAPI
RDMA Read performance is measured using our own pro-
gram which is constructed similarly to perf main.

Table 3 compares the read and write bandwidth to an
ext3fs file system on the local 40 GB disk against bandwidth
achieved to memory, using ramfs, a RAM file system. The
bonnie file-system benchmark is used.

It can be seen that there is a large difference in band-
width realizable over the network compared to that which
can be obtained to a disk-based file system. However, appli-
cations can still benefit from fast networks for many reasons

Table 2. Network performance

Latency ( � s) Bandwidth (MB/s)
IBNice 40.1 185

VAPI Send/Recv 9.2 825
VAPI RDMA Write 6.0 827
VAPI RDMA Read 12.4 816

Table 3. File system performance
Write (MB/s) Read (MB/s)

ext3fs 25 20
ramfs 556 1057

in spite of this disparity. Data is frequently already in server
memory due to file caching and read-ahead when a request
arrives. Also, in large disk array systems, the aggregate
performance of many disks can approach network speeds.
Caches on disk arrays and on individual disks also serve to
speed up transfers. Therefore, the following experiments
are designed to stress the network data transfer independent
of any disk activities. We mainly focus on experiments on
a memory-resident file system. Results on ramfs are rep-
resentative of workloads with sequential I/O on large disk
arrays or random-access loads on servers which are capable
of delivering data at network speeds. We also show some
results on ext3fs to quantify the impact of CPU utilization.

6.3 PVFS Concurrent Read/Write Bandwidth
The test program used for concurrent read and write per-

formance is pvfs-test, which is included in the PVFS release
package. We followed the same test method as described
in [6]. In all tests, each compute node writes and reads a
single contiguous region of size �� MB, where � is the
number of I/O nodes in use.

Figure 7 shows the read and write performance with IB-
Nice on the InfiniBand networks. For reads, the bandwidth
increases at a rate of around 120 MB/s with each additional
compute node. Similar performance can be seen for writes
with IBNice. The bandwidth here increases at a rate of ap-
proximately 160 MB/s with each additional compute node
when there are sufficient I/O nodes to carry the load.

Figure 8 shows the read and write performance of our
implementation PVFS over native VAPI. The same physi-
cal networks are used yet significant performance improve-
ments by designing and implementing PVFS on native
VAPI layers is achieved. Since data transfers are mostly
performed using RDMA initiated by the I/O nodes, the ag-
gregate capacity of all the I/O nodes can be delivered to
compute nodes. The bandwidth increase from adding an-
other I/O node is roughly 400 MB/s for simultaneous reads
from many compute nodes. For writes, the bandwidth in-
creases at approximately the same rate, though slightly less
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Figure 7. PVFS performance with IBNice (TCP/IP over InfiniBand).

due to the lower performance of RDMA Read compared to
RDMA Write.

6.4 MPI-IO Micro-Benchmark Performance

The same test as in the previous section was modified to
use MPI-IO calls rather than native PVFS calls. The num-
ber of I/O nodes is fixed at four, and the number of com-
pute nodes was varied from one to four. Figure 9 shows the
performance of MPI-IO over PVFS on VAPI and IBNice,
for both memory and disk file systems. On the RAM file
system, Figure 9, shows that PVFS native over VAPI of-
fers about three times better performance than PVFS over
IBNice. Even on a disk file system, ext3fs, it can be seen
that although each I/O server is disk-bound, a significant
performance improvement, 15–42%, is still achieved. This
is because the lower overhead of PVFS-VAPI leaves more
CPU cycles free for I/O servers to process concurrent re-
quests. With four compute nodes, MPI-IO over PVFS-VAPI
can achieve 95 MB/s aggregate write bandwidth, which is
almost four times the peak write bandwidth of the disks we
used for the tests. This shows that PVFS-VAPI offers almost
perfect performance aggregation of multiple I/O servers.
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 Figure 10. CPU Utilization of MPI-IO

Figure 10 shows CPU utilization on the compute nodes
when the same program runs with four I/O servers on ramfs.
It can be seen that the CPU overhead of compute nodes is as
high as 91% in PVFS-IBNice. This is because that the over-
head of PVFS over IBNice is dominated by the data trans-
fer, mostly because of copying overhead, context switches
and system calls in IBNice. CPU utilization drops off with

increasing number of compute nodes, because the waiting
time increases in each request when the server has more
concurrent requests to service. However, the CPU utiliza-
tion is still considerably high. In contrast, the overhead of
PVFS over VAPI is dominated by request initialization and
response handling costs in the PVFS client code, since the
NIC handles data transport using RDMA and there is no
kernel involvement in the I/O path. The CPU overhead is as
low as 1.5% which will enable greater scalability to a large
number of compute node clients.

6.5 Impact of Small Data Transfer Optimizations

To evaluate the impact of various small data transfer opti-
mizations, we measured the access time of small PVFS read
and write requests for different design schemes. The access
size varies from 128 B to 64 kB. Figure 11 shows that these
optimizations result in significant improvements on write
performance. It also shows these optimization schemes dif-
fer. As mentioned in section 3, server-based data transfer is
the basic scheme used for PVFS writes. When user buffer
registrations are all cached, the server uses RDMA read to
move data directly from user buffers, noted as Server-based,
100% hit in the plot. If user buffers are not cached, user
buffers must first be registered. The worst case where all
buffers are not cached is labeled Server-based, 0% hit in
Figure 11.

In both cases, the Fast RDMA scheme offers the best per-
formance. When buffers are all cached, 100% of accesses
hit in the pin-down cache. Since one copy is needed in the
Inline scheme, the Fast RDMA scheme outperforms the In-
line scheme, especially for large messages. Both schemes
offer better performance than the Server-based scheme, as
both Send/Recv and RDMA Write in the native VAPI layer
perform significantly better than RDMA Read on small data
transfers. When no buffers are cached, 0% of accesses hit
in the pin-down cache. One copy is needed in both the In-
line and Fast RDMA schemes. Since RDMA Write per-
forms slightly better than Send/Recv in our testbed, the Fast
RDMA scheme offers the best performance. As shown in
the left graph of Figure 11, there is a significant perfor-
mance drop in the Server-based scheme which requires reg-
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Figure 8. PVFS performance with InfiniBand VAPI
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Figure 11. Effects of Small Data Transfer Optimizations on Write

istering user buffers performs worst due to the prohibitively
costly memory registration. in the current release of Inifni-
Band software.

Similar results are achieved for read performance, but
not shown here. These results were used to decide the
scheme used by the communication manager. Since there is
no material difference between the Inline and Fast RDMA
schemes, for simpler design complexity, the Inline scheme
is used to transfer messages less than 4 kB, Fast RDMA
for messages up to 64 kB, and Server-based to transfer data
larger than 64 kB.

6.6 Impact of Pipelined Bulk Data Transfer
This experiment was designed to show the effect of

pipelined bulk data transfers in PVFS over InfiniBand. In
this test, a PVFS client transfers 32 MB to or from an
I/O server using the RAM file system. This test represents
workloads in which large amounts of data are moved to or

from a single large buffer on the client, such as for a check-
point snapshot.
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Figure 12. Effects of Pipelined Bulk Data
Transfer, 32 MBytes

Figure 12 shows the impact of transfer unit size on PVFS
performance, from a single 32 MB on the right-hand side of
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the graph to 512 small transfers on the left. The results show
that a transfer size smaller than about 2 MB is sufficient to
allow complete overlap between I/O access and communi-
cation. There is a slight degradation when the transfer size
is very small due to the effect of communication startup
overheads.

6.7 Impact of List I/O with File Discontiguity
The test application mpi-tile-io [25] implements tiled ac-

cess to a two dimensional dense dataset. This type of work-
load is seen in visualization applications and in some nu-
merical applications. For our tests, we used four compute
nodes and four I/O server nodes. Each compute node ren-
ders to one of a 2 � 2 array of displays, each with 1024 � 768
pixels as illustrated in Figure 6(a). The size of each element
is 24 bytes, leading to a file size of 72 MB.

The access pattern in this test is noncontiguous in file
space but contiguous in memory. This is a good candidate to
exercise PVFS list I/O. We test two versions of mpi-tile-io:
one is to use multiple contiguous I/O operations to achieve
noncontiguous file accesses (“Without list I/O”), the other
uses PVFS list I/O to make a single noncontiguous access.
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Figure 13. Performance of tiled I/O.
Figure 13 shows the results for both PVFS-VAPI and

PVFS-IBNice. It can be seen that list I/O improves perfor-
mance significantly. This is because 768 individual requests
are required to access a tile when not using PVFS list I/O.
The overhead of request and reply messages becomes domi-
nant in this case. With list I/O, however, only 6 requests are
required since one list I/O request is large enough to con-
tain 128 file accesses specifications. Compared to the per-
formance of PVFS-VAPI and PVFS-IBNice, with list I/O,
PVFS-VAPI offers 2.7 and 2.2 times the bandwidth on read
and write, respectively. Without list I/O, the improvement
is 79% and 93%. This difference is because the access size
is larger with list I/O and can yield more improvement from
the VAPI layer.

6.8 Impact of List I/O Memory Registration
We modified mpi-tile-io to show the effect of list I/O

memory registration and deregistration on its performance.
The modification is to use noncontiguous accesses in mem-
ory as well. We use the same parameters as in the previ-
ous section, except that the size of an element is now 64

bytes. This change forces the test not to use Fast RDMA
Write to transfer data so that the client will be forced to reg-
ister memory to carry out the transfers. Also each client
allocates a full 2048 � 1536 array so that its individual sub-
array will be stored as noncontiguous stripes in memory.
Thus, noncontiguous accesses in both memory and file
space are necessary. We also changed the ROMIO [31]
source code to use the extended interfaces for pvfs read list
and pvfs write list that we proposed in Section 5.

The number of memory registration and deregistration
events is interesting as it will indicate transfer overhead.
With the unmodified PVFS interface, each process initiates
6 list I/O requests; however, the requests reference memory
regions which are not adjacent thus 768 memory registra-
tion operations are needed. With the extended interface,
though, PVFS is informed that these 768 memory regions
are actually all from the same allocation. In fact, the ADIO
layer [30] knows this information when it parses the derived
Datatype and composes parameters of PVFS list calls; the
application is unchanged. Thus, only 6 memory registration
operations are needed, 5 of which are cached.
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 Figure 14. Effects of the Extended List I/O In-
terface

Figure 14 shows there is a 85% bandwidth improvement
for reads, and 71% for writes, owing to the list I/O buffer
management optimization. Note that the deregistration time
is not taken into account in read and write operations in this
test, since the size of the cache is sufficient to contain all
the entries required for either case. If this were not true, the
performance gap would be even larger.

7 Related Work

Various user-level communication protocols have been
used for network storage in the past. Zhou et al. [34]
present their experiences with VIA networks for database
storage. They implemented a block-level storage architec-
ture that takes advantage of features found in VI commu-
nication systems. They found that VIA can improve I/O
performance between the database system and the storage
back-end. Magoutis et al. [22] explore DAFS performance
characteristics, also on VIA. Our work is based on the In-

13



finiBand architecture which provides more features and ser-
vices than VIA such as RDMA Read and service levels,
yielding a more flexible design space and different design
goals and techniques.

A set of transport layers based on user-level communi-
cation networks have been discussed and targetted for dif-
ferent domains. Zahir [33] describes a storage-networking
transport layer for the Lustre file system based on VI-like
networks. Carns [4] designs a Buffer Message Interface
(BMI) as a transport layer for the next generation PVFS.
His prototype implementation works on both TCP/IP and
Myrinet/GM. Liu et al. [17] propose a client/server commu-
nication middleware over system area networks. It provides
a communcation abstraction to upper layers by hiding the
discrepancy of various system area networks in the middle-
ware. We share similarities with these efforts in designing
a transport layer on InfiniBand to support PVFS, although
our work differs in significant ways. First, the design of this
transport layer is customized for high performance by tak-
ing advantage of PVFS protocol characteristics. Second,
our transport layer is capable of cooperating with buffer
management and communication management to deal with
particular issues in I/O intensive applications.

Memory registration and deregistration are a common is-
sue in modern networks which provide RDMA capabilities.
Basu et al. [32] show how the NIC and host-level software
can collaborate to manage large amounts of host memory.
Tezuka et al. [12] propose a pin-down cache to reduce mem-
ory registration and deregistration overhead for zero-copy
communication. Zhou et al. [34] propose a batched dereg-
istration scheme to deregister all buffers in a region in one
operation. Significant changes in both host-level software
and the NIC have been made in their approach. In our work,
we deploy a pin-down cache in the PVFS layer; however,
we focus on optimization on reducing calls to the cache.

Coll et al. [8] show the importance of the placement of
I/O nodes in a cluster system. The main purpose of such
placement is to reduce I/O traffic congestion and the effect
on other traffic from the physical level. Our work focuses
on the software level. Their work can be combined with
our communication management to achieve the best perfor-
mance.

8 Conclusions and Future Work

In this paper, we study how to leverage InfiniBand tech-
nologies to improve I/O performance and scalability of clus-
ter file systems. We design and implement a version of
PVFS that takes advantage of InfiniBand features. Our work
shows that the InfiniBand network and its user-level com-
munication and RDMA features can improve all aspects
of PVFS, including throughput, access time, and CPU uti-
lization. However, InfiniBand networks also pose a num-

ber of challenging issues to I/O intensive applications such
as PVFS. In particular, we address the issues in this paper
with: a transport layer customized for the PVFS protocol by
trading transparency and generality for performance, buffer
management for flow control and efficient memory regis-
tration and deregistration, and communication management
for reducing network congestion and achieving differenti-
ated services.

Compared to a PVFS implementation over standard
TCP/IP on the same InfiniBand network, our implementa-
tion offers three times the bandwidth if workloads are not
disk-bound and 40% improvement in bandwidth if disk-
bound. The client CPU utilization is reduced to 1.5% from
91% on TCP/IP.

As of this writing, a major rewrite of PVFS is in active
development. Our work is directly applicable to this next
generation PVFS over networks with user-level access and
RDMA capabilities. We are eagerly working with the PVFS
team to incorporate our design into the next PVFS and to
implement PVFS on InfiniBand networks.
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