
Unifier: Unifying Cache Management and Communication Buffer Management
for PVFS over InfiniBand

�

Jiesheng Wu1
�

Pete Wyckoff2 Dhabaleswar Panda1 Rob Ross3

1Computer and Information Science
The Ohio State University

Columbus, OH 43210�
wuj, panda � @cis.ohio-state.edu

2Ohio Supercomputer Center
1224 Kinnear Road

Columbus, OH 43212
pw@osc.edu

3Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439
rross@mcs.anl.gov

Abstract

The advent of networking technologies and high perfor-
mance transport protocols facilitates the service of stor-
age over networks. However, they pose challenges in in-
tegration and interaction among storage server application
components and system components. In this paper, we put
forward a component, called Unifier, to provide more effi-
cient integration and better interaction among these com-
ponents. Unifier has three notable features. (1) Unifier
integrates cache management and communication buffer
management. It offers a single copy data sharing among
all components in a server application safely and concur-
rently. (2) It reduces memory registration and deregistra-
tion costs to enable applications to take full advantage of
RDMA operations. (3) It provides means to achieve adap-
tation, application-specific optimization, and better cooper-
ation among different components.
This paper presents the design and implementation of Uni-

fier. This component has been deployed and evaluated in a
version of PVFS1 implementation over InfiniBand. Exper-
imental results show performance improvements between
30% and 70% over other approaches. Better scalability is
also achieved by the PVFS I/O servers.

1 Introduction
Network storage systems are increasingly becoming a

mainstream solution for I/O intensive applications in vari-
ous domains, such as data-centers, high performance com-
puting systems, and the corporate computing environments.
Network storage systems provide potentials to achieve�

This research is supported in part by Department of Energy’s Grant
#DE-FC02-01ER25506, and National Science Foundation’s grants #EIA-
9986052, #CCR-0204429, and #CCR-0311542.�

Work done in part while visiting Mathematics and Computer Science
Division, Argonne National Laboratory during Summer 2003.

high performance, scalability, reliability, and manageabil-
ity. However, performance of network storage systems is
often limited by the low performance of network subsys-
tem [1, 2, 17, 23, 24].
The advent of networking technologies and high perfor-

mance transport protocols facilitates the service of storage
over networks. Two key features, user-level networking and
remote direct memory access (RDMA), are provided. These
enabling technologies eliminate or reduce costs of memory
copy, network access, interrupt, and protocol processing in
the network subsystem. However, one of the most signifi-
cant issues using RDMA is efficient communication buffer
management to reduce memory registration and deregistra-
tion costs [31, 18, 12, 29, 30].
Another source of performance limitation in networked

storage systems is the lack of integration and coopera-
tion among various system components (the file cache, the
file system, and the network subsystem) and the storage
server applications in the general-purpose operating sys-
tem [14, 20, 4]. The narrow interface [14, 4, 3, 15, 25] is
one of main reasons to lead to this limitation. Redundant
data copying and multiple buffering [20] occur. As shown
in Figure 1, even RDMA provides zero-copy communica-
tion between buffers in the communication subsystem, mul-
tiple memory copying and buffering may occur between the
communication subsystem and other components. Mem-
ory copying leads to high CPU overhead and limited server
throughput. In networks such as InfiniBand that provides
bandwidth comparable to the memory bandwidth, memory
copying can be the primary performance bottleneck. Mul-
tiple buffering of data wastes memory. Consequently, the
effective size of cache space is reduced, increasing cache
miss rates and disk accesses.
In this paper, we present the design, implementation, and

evaluation of Unifier. Unifier is a component in server ap-
plications such as network storage system servers and other
I/O serving applications (e.g., Web servers). First, it pro-

1



buffer buffer

cachecache

Application

File system

buffer Storage
Devices

Network NIC Network NIC

RDMA

Zero−copy

communication

copy copy

Communication Communication

Storage system

Figure 1. Copying and Buffering in the I/O
Path.

vides an application-level cache with an expressive inter-
face to other components. Consequently, cache manage-
ment and communication management can be integrated
to eliminate redundant data copying and multiple buffering
in the I/O path. Cache adaptation and application-specific
cache optimization are also enabled. Second, it tries to
manage these communication buffers in a manner to re-
duce memory registration and deregistration costs as much
as possible for RDMA networks.
A prototype of Unifier was implemented as a stand-alone

component. It has well-defined interfaces. It also allows
flexible accesses to the underlying file and storage systems
via various interfaces. This component can be deployed in
a wide range of server applications as both an application-
level cache manager and a communication buffer manager
for RDMA operations. In this paper, we focus on the de-
sign of Unifier over InfiniBand network and its deployment
in an implementation of PVFS1 over InfiniBand [29, 30].
Our central performance results are the performance of the
PVFS1 implementation with Unifier, in addition to other
micro-benchmarks to measure the cache performance itself.
Experimental results show that the Unifier can offer a fac-

tor of improvement between 1.3 and 2.7 over the existing
approaches in a simple client/server architecture. The Uni-
fier method also increases the effective cache size due to the
integration of communication buffers and the cache buffers,
leading to increased performance. Performance results of
PVFS1 with Unifier show performance improvements be-
tween 30% and 70% over two other methods often used in
the PVFS I/O server implementation. Better scalability is
also achieved by the PVFS I/O servers.
The rest of the paper is organized as follows. We first intro-

duce PVFS and InfiniBand in Section 2. Section 3 describes
our motivation. Section 4 presents the design of Unifier, in-
cluding its architecture, API, potential benefits, and design
issues. Sections 5 gives an overview of the prototype imple-
mentation of Unifier. The performance results are presented
in Section 6. We examine related work in Section 7 and
draw our conclusions and discuss future work in Section 8.

2 Overview of PVFS
PVFS is a leading parallel file system for Linux cluster

systems. It was designed to meet increasing I/O demands
of parallel applications in cluster systems. As of this writ-
ing, PVFS Version 2 (PVFS2) [22] has just been released.
The PVFS overview in this section is about PVFS1, though
some basic concepts may be applied to PVFS2 as well.
As shown in Figure 2, a number of nodes in a cluster sys-

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Node
I/O server

Node
I/O server

Node
I/O server

Data

Data

Data

Meta
Data

.

.

.
.
.
.

...

.

.

N
etw

ork

Metadata
Manager

Figure 2. Typical PVFS setup.

tem can be configured as I/O servers and one of them is also
configured to be the metadata manager. It is possible for a
node to host computations while serving as an I/O node.
PVFS achieves high performance by striping files across

a set of I/O server nodes to achieve parallel accesses and
aggregate performance. An I/O daemon runs on each I/O
node and services requests from compute nodes, particu-
larly read and write requests. Thus, data is transferred di-
rectly between I/O servers and compute nodes. PVFS uses
the native file system on the I/O servers to store individual
file stripes. A manager daemon runs on a metadata man-
ager node. It handles metadata operations involving file
permissions, truncation, file stripe characteristics, and so
on. Metadata is also stored in the local file system. The
metadata manager provides a clusterwide consistent name
space to applications. In PVFS, the metadata manager does
not participate in read/write operations.

3 Motivation
In this section, we first discuss three data transfer methods

in PVFS over TCP/IP. Then, we analyze issues with these
methods when we design and implement PVFS over Infini-
Band. This analysis serves as our motivation.

3.1 PVFS Data Transfer over TCP/IP
The I/O path in a PVFS I/O server combines both network

I/O operations and file I/O operations. Therefore, the effi-
ciency of PVFS I/O servers relies on performance of both
operations, as well as the interaction between their associ-
ated subsystems: the network subsystem and the file sys-
tem. In the implementation of PVFS over TCP/IP, three
data transfer methods can be provided, reflecting different
interactions.
In the Normal method, two separate calls, a file read call

and a network write call for PVFS read or a network read
call and a file write call for PVFS write are used. As ana-
lyzed in [26], there are usually at least two data copies in
this method: copy between the server buffer and the file
cache, and copy between the server buffer and the network
communication buffer..
The Mmap method maps the requested part of a file into

the application user space using the system call mmap(2).
This avoids data copy between the server buffer and the file
cache. The improvement comes at the cost of several con-
straints, complicated memory management, and error-prone
pitfalls [26], especially for write. Therefore, PVFS uses this
method only for PVFS read.
In the Sendfile method, a PVFS I/O server uses the send-
file(2) system call to do the file read and the network

2



write together in one call. This reduces two data copies
as mentioned in the Normal method. However, there is
no support for recvfile-like semantics. That is, to serve a
PVFS write request, the I/O server should follow the Nor-
mal method.

3.2 Data Transfer Issues in PVFS over InfiniBand
In [29], we designed and implemented a version of PVFS

(PVFS 1.5.6) over InfiniBand. Our results show that re-
designing PVFS over the InfiniBand native transport layer
is worthy with up to 3 times improvement over TCP/IP on
the same IBA network when performance of the local file
system is well balanced compared to the network system.
The Normal and Mmap methods can be applied to PVFS
over InfiniBand when we use the InfiniBand native trans-
port layer, while we cannot use the Sendfile method directly.
There are several issues associated with each method.
Memory copying between different components: I/O
data is copied between the file cache and PVFS server
communication buffers. This happens when the Normal
method is used. It also happens when we want to avoid dy-
namic memory registration and deregistration in the Mmap
method. Data copying incurs high per-byte overhead for
PVFS read and write operations.
Explicit communication buffer pool: To avoid expensive
dynamic memory registration and deregistration, an often
used solution is to pre-register a list of buffers and to keep
using them for all communication. These buffers actually
reduce the effective size of and hit rate of the server’s file
cache.
Data duplication in communication buffers: A data ob-
ject may be copied into different communication buffers to
serve different requests which access the same object.
Dynamic memory registration and deregistration: This
happens when the mapped buffer is used for RDMA oper-
ations in the Mmap method. As shown in [29], up to 35%
performance can be degraded due to the costs of memory
registration and deregistration.
These issues have a root in the lack of integration and in-

teraction among the PVFS transport layer over InfiniBand,
the file/storage component, and the underlying I/O subsys-
tem. To solve these issues, we propose a component, Uni-
fier, to unify cache management and communication buffer
management. We describe the detailed design of Unifier in
Section 4 and a prototype implementation in Section 5.

4 The Design of Unifier
In this section, we present the design of Unifier. We start

with its basic software architecture and its application pro-
gramming interface (API), followed by its potential benefits
and design issues.

4.1 Basic Software Architecture
Unifier is designed to provide efficient interaction between

components. The basic architecture and its interaction with
other components are shown in Figure 3.
The control flow is shown by the dotted lines in Figure 3.

Unifier, as a central hub, interacts with the request man-
ager, the transport component, and the storage component.
First, it receives requests from the request manger. Second,
it provides cache buffers to serve these requests. Lastly,

Storage
system

Unifier

Cache buffer

Transport
layer

IBA HCA

IBA VAPI

Disk system

Component
Storage 

RDMA Direct or 
raw I/O

Transport
component

Unifer 

data flow

Control flow

Request Manager

to client

from client

Request component

Figure 3. Basic software architecture of Uni-
fier.

it provides the same buffers to the transport component to
transmit and receive data.
The data flow is shown by the solid line. The data flow

is simple. All data is placed in the Unifier’s cache buffers.
The cache buffers are also used by the transport component
for communication, as well as the storage component for
I/O operation. Given a data object, there is only one copy in
the Unifier’s cache buffers shared by all components safely
and concurrently.
Unifier acts as a cache manager which maintains an

application-level cache and hides the details of the storage
component. It also works as a buffer manager, providing
buffers to the transport component. The cache buffer pool
is managed in a way to enable efficient RDMA operations.
Further, it intends to optimize cache management for better
network performance, such as buffer coalescing and vari-
able cache units.

4.2 Unifier Interface
The underlying observation that shapes our design of the

Unifier API is that a high-performance API should adopt
the lessons learned from the design of the high-performance
server architectures. As a result, we provide the following
features in the Unifier API.

Supporting structured data access: Structured data ac-
cess is a common access pattern in many applications. Na-
tive structured data access support in each component is a
key for high performance [27, 30, 10]. The Unifier API
should cater to this requirement and enable possible opti-
mizations for structured data access.

Supporting asynchronous operations: Asynchronous op-
erations provide opportunities to overlap I/O operations
with other processing. Network I/O operations in IBA are
asynchronous. File and storage systems have been evolv-
ing to provide asynchronous I/O support [5]. Unifier API
should provide an interface to support asynchronous opera-
tions and to take advantage of the advances in both network
and storage I/O.

A more expressive interface: Significant research work
has pointed out that narrow interfaces in the existing sys-
tems have become a barrier for different subsystems to ex-
change their semantic information to improve system per-
formance [15, 25, 4]. A more expressive interface is ex-
pected, which allows more cross-subsystem optimizations
and more flexible extended services.

3



Recognizing the importance of these features, we define a
simple yet powerful Unifier’s interface. This section briefly
describes its interface. A complete discussion of the whole
interface can be found in the PVFS2 document [22]. Cur-
rently, the interface includes five types of calls: 1) Post a
request; 2) Check the request completion; 3) Query cache
information; 4) Completion notification; 5) Release re-
sources. As an example, we use Unifier post read
to show how we achieve the aforementioned features in the
Unifier API.

Unifier post read(int fd,
ACCESS Agg * access info ,
BUFFER Agg * buffer info,
INFO Agg * semantic info,
COMP Info * comp info)

In Unifier post read, ACCESS Agg aggregates in-
formation of a structured access. This aggregate structure
can be easily represented by an MPI Datatype if other com-
ponents accept Datatype directly [10], or a representation
of structured access. INFO Agg contains semantic infor-
mation the caller wants to pass to the Unifier. Currently,
we only support cache policy selection and the cache unit
size. We intend to extend this to convey more informa-
tion to Unifier for optimization and for differential services.
COMP Info guides Unifier to set up the completion notifica-
tion. The Unifier post read operation returns buffers which
hold the requested data. We use BUFFER Agg to aggre-
gate a list of buffers. These buffers will be provided to the
transport component for communication.

4.3 Potential Benefits
The primary goal of Unifier is to improve the performance

of I/O servers. It offers the following potential benefits.

1. Zero-copy I/O serving: Unifier can achieve the min-
imal number of data copies to the extent permitted by
the hardware. Zero-copy I/O serving path is easily
achieved in a typical I/O server hardware setup over
InfiniBand, as shown in Figure 3.

2. Increased cache size: The integrated cache space and
communication buffer space actually increases the ef-
fective cache size, and thus the cache hit rate. Consid-
ering the increasing gap between the memory system
and the disk system and the increasing gap between the
network system and the disk system, a small increase
in the cache hit rate can improve the performance of
I/O intensive applications significantly.

3. Reduced memory registration and deregistration
costs: A part if not all of the cache buffers in Uni-
fier can be pre-registered for communication without
any memory registration or deregistration cost on these
buffers.

4. Native structured data access support: We kept the
structured data access support in mind from the begin-
ning when we designed Unifier. This support not only
fits application common access patterns well, but also
provides tremendous optimization potential in both
Unifier and other components.

In this paper, we focus on the above benefits. Many
other potential benefits, such as providing cache informa-
tion to the request scheduler for cache-aware scheduling,

application-controlled caching policies, and moving hot
data into the memory of the IBA Channel Adapter, are not
discussed.

4.4 Design Issues
Unifier and the Unifier-based I/O server software architec-

ture show very attractive potential benefits, however, several
issues need to be addressed for this architecture to be used
in real systems to achieve high performance. We consider
the following three important issues, namely cache buffer
sharing, the size of registered cache buffers, and security.

4.4.1 Cache Buffer Sharing
In Unifier, network read and write and file/storage read and
write all share a single copy of a given data object. This
results in problems of synchronization and consistency in
buffer sharing. Techniques such as immutable buffers used
in IO-Lite [20] can be used to solve these problems, but they
do not support in-place modification. Because scientific
applications where in-place modification is a must are the
main target of PVFS, we propose other means to solve the
buffer sharing problems. We use an allocate-release model
to manage and control sharing on the cache buffers. The
main design points are as follows:
Single owner: The only owner of all cache buffers is Uni-
fier. This implies that Unifier has control on all buffer shar-
ing. This reduces the design complexity significantly.
Allocate: Unifier allocates the cache buffers to each opera-
tion. When a conflict sharing occurs, the allocation will be
deferred. When there is no conflict sharing, the same cache
buffers may be allocated to several concurrent operations.
This enables safe and concurrent sharing.
Release: When a communication operation is granted with
the cache buffers, it should release these buffers to Unifier
when it completes.
With this design, Unifier supports both read-only sharing

as well as write sharing. I/O data can be modified in place
if it is not currently shared. Therefore, Unifier provides
the sendfile semantics over InfiniBand transport protocols,
which transmits data in the cache buffers directly to the net-
work without any copy. It also provides a recvfile-like sup-
port that data received by the network is placed directly into
the cache buffers which are associated with a data object in
file/storage systems.
There are three reasons why we support the recvfile-like

semantics which is not supported by the operating system
on the traditional network protocols. First, the IBA network
performance is comparable to the system memory system.
Second, RDMA operations provide a “shared-memory il-
lusion”. To some extent, a process on a remote machine
could be equally considered as a local process running on
the same machine. Third, write sharing is very little in par-
allel applications [28]. A PVFS write can be done without
affecting others. Therefore, providing recvfile-like support
over InfiniBand can improve performance of PVFS writes
without costs in common cases. Even when write sharing
does occur, since the network performance is high, the cost
to maintain write sharing is low.

4.4.2 The Size of Registered Cache Buffers
Another main goal of Unifier is to reduce memory registra-
tion and deregistration cost imposed by RDMA operations.

4



Ideally, a part if not all cache buffers can be registered and
be always ready for RDMA operations. However, there are
several tradeoffs to be addressed to achieve this objective.
First, the size of Unifier’s cache should be as large as pos-
sible. Unifier should use all free memory as cache to in-
crease cache hit rate. Due to dynamic memory demands,
a static size may cause virtual memory penalties. Second,
as many cache buffers as possible should be registered dur-
ing the cache initialization. However, the size of registered
cache buffers should be limited not to degrade the system
performance. Because registered buffers are pinned and not
swappable, the effective size of physical memory used for
other purposes is reduced.
In our design, the cache buffers are divided into two

groups: Ready and Raw. Ready buffers are registered and
resident in the system during the Unifier’s life time. Raw
buffers are allocated during the cache initialization, but
not registered. Communication on these buffers needs on-
the-fly registration and deregistration. The size of Ready
buffers is projected conservatively according to the estimate
of memory needed by a PVFS server application with its
maximum support of outstanding requests. The size of raw
buffers is the total physical memory size subtracted by the
size of Ready buffers and the size of memory needed by a
PVFS server application with a light load. With this design,
we can achieve a good tradeoff between the cost of mem-
ory registration and deregistration and the cost of potential
virtual memory activities.

4.4.3 Security
Security considerations are necessary for RDMA opera-
tions. An application that advertises some portion of its
memory for access by the remote peer using RDMA Read
or RDMA Write can potentially open itself to security at-
tacks. InfiniBand provides mechanisms such as Protection
Domain, L Key, R Key, and Access Control to support pro-
tection against inadvertent and unauthorized access.
In our design, all RDMA operations are performed by the

I/O server. The I/O server enables only local read and write
accesses to its Unifier cache buffers. The client advertises
buffers to the I/O server with the minimum amount of ac-
cess rights with respect to its related requests. For exam-
ple, if a client buffer is used for a PVFS read request, it
is only registered for remote write access which allows the
server to write data into it using RDMA Write. When the
required access to the buffer is finished, the access rights are
revoked. This dynamic control is achieved by using Mem-
ory Windows.

5 Implementation
This section gives an overview of the implementation of

the Unifier component and its deployment in PVFS over
InfiniBand.
Unifier is implemented as a user-level component in PVFS

software architecture [22, 29]. As a prototype implemen-
tation, the cache implementation is mostly based on the
file cache implementation in Linux 2.6. Our implementa-
tion supports variable cache unit sizes from 4 KBytes to
64 KBytes. Applications can advise Unifier to choose a
cache unit size for a file when the file is first opened. Unifier
uses the O DIRECT support to read and write file data with
bypass of the system cache. Unifier provides both polling

and callback completion notification. The callback comple-
tion notification depends on the support of callback comple-
tion notification provided by the underlying storage compo-
nent. To support structured data access, our current imple-
mentation uses a list of � offset, length � pairs to represent a
structured data access and cache buffers. This is compliant
with both PVFS1 and PVFS2 implementations where the
request manager interprets the high-level abstraction (e.g.
MPI Datatype) of structured data access.
The deployment of Unifier in PVFS is straightforward, as

shown in Figure 3. In the current implementation, Unifier
provides explicit information queries to the request man-
ager. However, how to make use of the cache information
is under study. We are also working on the adaptive cache
management.

6 Experimental Results
In this section, we provide three sets of results. First

we show the basic results of the network, the file system,
and the memory system. Next, we compare the micro-
benchmark level performance of Unifier with the Normal
and Mmap methods. Lastly, we analyze the performance of
a PVFS implementation over InfiniBand with the deploy-
ment of Unifier. The PVFS implementation over InfiniBand
is based on the PVFS 1.5.6 release. Details can be found
in [29].
All our experiments used the following experimental

testbed. A cluster system consisting of 8 nodes built around
SuperMicro SUPER P4DL6 motherboards and GC chipsets
which include 64-bit 133 MHz PCI-X interfaces. Each
node has two Intel Xeon 2.4 GHz processors with a 512 kB
L2 cache and a 400 MHz front side bus. The machines
are connected with Mellanox InfiniHost MT23108 Dual-
Port 4x HCA adapter through an InfiniScale MT43132
Eight 4x Port InfiniBand Switch. The Mellanox Infini-
Host HCA SDK version is thca-x86-0.2.0-build-001. The
adapter firmware version is fw-23108-rel-1 18 0000. Each
node has a Seagate ST340016A, ATA 100 40 GB disk. We
used the Linux 2.4.7-10 kernel. Unless stated otherwise, the
unit megabytes (MB) in this paper is an abbreviation for 2

���

bytes.

6.1 Basic System Performance Results
Performance realized by PVFS applications depends on

the performance of three main subsystems: the network, the
memory, and the file system. Table 1 compares the through-
puts of IBA VAPI Send/Recv, RDMA Write, RDMA Read,
memory copy, file read and write with and without cache. In
the IBA throughput tests, memory registration and deregis-
tration costs are not included. In the memory copying test,
the amount of data copied is 20 MBytes, much larger than
L1 and L2 caches to eliminate cache effect. The bonnie [16]
file-system benchmark is used to test the file system perfor-
mance.
Memory registration and deregistration costs are crucial

for us to leverage InfiniBand features. Figure 4 shows these
costs with different buffer sizes using Mellanox fast mem-
ory registration extension in VAPI [19]. Note that much
higher costs should be paid if we use VAPI regular memory
registration facilities. We show two types of deregistration.
One is single deregistration, labeled by Dereg. Another is
batched deregistration. Multiple deregistration operations

5



Table 1. Throughput of different subsystems
Subsystem Throughput (MB/s)

VAPI Send/Recv 830
VAPI RDMA Write 830
VAPI RDMA Read 826
Memory Copying 610

File Read w/o cache 20
File Write w/o cache 25
File Read w/i cache 560
File Write w/i cache 440

are done in one call. The batched number is 60. The av-
erage cost of each operation is reported by Batched Dereg.
We can see that the total registration and deregistration costs
are significantly high. This is the reason why we make great
effort in Unifier to reduce these costs.

0

10

20

30

40

50

60

70

80

90

1 10 20 30 40 50 60 70 80 90 100

La
te

nc
y 

(u
s)

Number of Pages

Reg.
Dereg.

Batched Dereg.

Figure 4. Costs of Memory Registration and
Deregistration.

It can be seen that there is a large difference in bandwidth
realizable over the network and the memory system com-
pared to that which can be obtained to a disk-based file
system without cache effect. However, applications can
still benefit from fast networks for many reasons in spite
of this disparity. Data is frequently in server memory due
to file caching and read-ahead when a request arrives. Also,
in large disk array systems, the aggregate performance of
many disks can approach network speeds. Caches on disk
arrays and on individual disks also serve to speed up trans-
fers. Therefore, the following experiments are designed to
stress the network data transfer and independent of any disk
activities. We consider data is cached. The results are rep-
resentative of workloads with sequential I/O on large disk
arrays or random-access loads on servers which are capable
of delivering data at network speeds from a well-balanced
storage system.

6.2 Performance of Micro-benchmarks

In this section, we designed several micro-benchmarks to
show the performance of Unifier. We put Unifier in a sim-
ple client-server environment, which is similar to the PVFS
architecture but simpler. In these tests, a client sends one
or more read or write requests to a server. The server then
serves these requests using three different methods: Nor-
mal, Mmap, and Unifier, respectively. Details of Normal
and Mmap methods are discussed Section in 3.1.

6.2.1 Cached Read and Write Performance
We measured the cached read and write performance of
these three methods.
In the read test, all data is in the system cache in the Nor-

mal and Mmap method. All data is also in the Ready cache
buffer in the Unifier method. We used this test to show the
best case performance of all methods. Figure 5 shows the
read results. The Normal method gives a peak bandwidth
of 324 MBytes/sec. We see a small drop when the access
sizes are larger than 128 KBytes, probably this is because
the increase of the memory footprints affects the memory
copy performance.
The Mmap method gives a peak bandwidth of 501

MBytes/sec. The memory registration and deregistration
costs have a significant impact, particularly for small access
sizes. When the access size increases, the costs of memory
registration and deregistration become less than the cost of
memory copy, this method performs better than the Normal
method.
In the Unifier method, data is cached in the Unifier

Ready cache buffers. Thus, the server can RDMA write
data directly to the client buffer from its Unifier’s cache
buffers. The Unifier method gives a peak bandwidth of 630
MBytes/sec. It achieves an improvement of a factor of about
2.0 over the Normal method, a factor of about 1.3 over the
Mmap method when the access size is large, a factor of up
to 2.7 over the Mmap method when the access size is small.
Figure 6 shows the write results. The Normal method

gives a peak bandwidth of 258 MBytes/sec. The Mmap
method gives a peak bandwidth of 457 MBytes/sec. The
Unifier method gives a peak bandwidth of 561 MBytes/sec.

6.2.2 Effects of Cache Size
As discussed earlier, the effective cache size in each method
is different. Given a system with 512 MBytes physical
memory, the maximum size of memory which can be used
for cache is around 420 MBytes. In our test, the server ap-
plication consumes around 60 MBytes. Then around 360
MBytes memory can contribute to cache data. The Mmap
and Unifier methods can make full use of these 360 MBytes
for caching. However, since we need some pre-registered
communication buffers in the Normal method, we allocate
20 MBytes for this use, thus, the effective cache size is
around 340 MBytes. Note that to allow the server to serve a
large number of concurrent requests in a real PVFS con-
figuration, even a larger buffer pool may be needed. In
the Unifier method, the maximum size of Ready buffers al-
lowed by the system is around 200 MBytes. So that around
160 MBytes Raw buffers are in the Unifier cache, which
requires dynamic registration and deregistration.
We used a re-read test to show the effects of cache size.

In this test, the client reads a file whose size varies from
300 MBytes to 400 MBytes. This test reads a file sequen-
tially with the block size of 128 KBytes. Then, it reads the
same file again sequentially. The bandwidth achieved by
the second read is reported in Figure 7. We can see that
both the Mmap and the Unifier methods can still hold the
entire file in the cache when its size is not larger than 360
MBytes, while the Normal method can not. When the file
size increases to 380 MBytes, all methods suffer due to the
disk-bound access on a normal IDE disk which can offer a

6



0

100

200

300

400

500

600

700

4 8 16 32 64 128 256 512 1024

Ba
nd

w
id

th
 (M

By
te

s/
se

c)

Access Block Size (KBytes)

Normal
Mmap

Unifier 

Figure 5. Cached read bandwidth.

0

100

200

300

400

500

600

4 8 16 32 64 128 256 512 1024

Ba
nd

w
id

th
 (M

By
te

s/
se

c)

Access Block Size (KBytes)

Normal
Mmap

Unifier 

Figure 6. Cached write bandwidth.

m

0

100

200

300

400

500

600

300 320 340 360 380 400

Ba
nd

w
id

th
 (M

By
te

s/
se

c)

File size (MBytes)

Normal
Mmap

Unifier 

Figure 7. Effects of cache size.

800

1000

1200

1400

1600

1800

2000

2200

2400

1 2 3 4
Ag

gr
eg

at
e 

Ba
nd

w
id

th
 (M

By
te

s/
se

c)
Number of Clients

Normal
Mmap

Unifier 

Figure 8. PVFS cached read performance.

read bandwidth of 20 MBytes/sec. All methods are compa-
rable. This also shows that the Unifier cache can provide
comparable performance to the system cache with the se-
quential workload.

6.3 Performance of PVFS1 with Unifier
The test program used is pvfs-test, which is included in the

PVFS release package. We followed the same test method
as described in [8]. That is, each compute node writes and
reads a single contiguous region of size ��� MB, where �
is the number of I/O nodes in use. The number of I/O nodes
was fixed at four, and the number of compute nodes was
varied from one to four.
Figure 8 shows the cached read performance with differ-

ent methods deployed in an implementation of PVFS over
InfiniBand VAPI from our group. The aggregate bandwidth
realized by all clients is reported. There are two observa-
tions. First, PVFS with Unifier scales better than other two
methods. This is due to the lower CPU overhead needed to
server each request in the Unifier method. In other methods,
either memory copying or memory registration and deregis-
tration consumes significant CPU cycles. Second, in terms
of the peak bandwidth, the Unifier achieves an improvement
of a factor of 1.7 over the Normal method, a factor of 1.3
over the Mmap method.

7 Related Work
There are three main areas which are related to our

work, namely Copy avoidance techniques, Information
techniques, and Networked file and storage systems over
RDMA. The literature on each area is large and rich, so we
only cite a few representative samples.
Copy avoidance techniques: Techniques such as
Fbuf [13], Zero-Copy TCP [11], Emulated copy [6], and

Page remapping [2] were mainly proposed to eliminate the
user-kernel data copy. The closest work to ours in spirit
is IO-Lite [20] and network-centric buffer cache organiza-
tion [21]. In contrast, our work has three important differ-
ences. First, our work focuses zero-copy I/O serving on
user-level protocols over RDMA networks. Second, Unifier
takes a different approach to provide in-place modification
for write-sharing. Third, Unifier deploys an application-
level cache and has little intrusion to existing kernel com-
ponents.

Information techniques: The idea of exposing OS infor-
mation to enable adaptation has been stated in a rich set of
work. Different approaches have been taken, such as the
library operating system in Exokernel [14], Infokernel [4],
and Gray-box systems [3]. The design and the interface of
Unifier reflect the same idea. However, we provide expres-
sive interface for interaction among components. We also
focus on specific server applications, instead of general-
purpose operating systems.

Networked file/storage systems over RDMA: Direct Ac-
cess File System (DAFS) [18, 12], PVFS over Infini-
Band [29], NFS over RDMA [7], iSCSI extension for
RDMA [9], and many others have leveraged emerging net-
work technologies to design high performance networked
file/storage systems. These work mostly focuses on us-
ing RDMA operations to redesign the transport protocols
and to make transition from traditional TCP/IP networks
to RDMA-capable networks. In contrast, our work centers
around integration and interaction among different compo-
nents in network storage servers over RDMA-capable net-
works.

7



8 Conclusions and Future Work
This paper presents the design and implementation of Uni-

fier. We also deployed and evaluated this component in
a version of PVFS1 implementation over InfiniBand. Ex-
perimental results from a prototype implementation show
performance improvements between 30 and 70% over two
other methods often used in the PVFS I/O server imple-
mentation. The Unifier method also increases the effective
cache size, leading to increased performance.
Unifier was started as a research component in the design

of PVFS2 [22]. The integration of Unifier with other PVFS2
components, testing, and optimization are underway. We
are also working on exploring other potential benefits, such
as cache-aware request scheduling and variable cache poli-
cies and cache page sizes. The architecture as such could
be used in other server applications such as DAFS, iSCSI
storage servers, and data-center servers. We plan to have
these case studies as our future work.

Acknowledgments
We are grateful to Phil Carns from Clemson University

for providing us many insights into PVFS2 and many helps
during our design and implementation. We would also like
to thank Rajeev Thakur, Neill Miller and Robert Latham
at Argonne National Laboratory for many discussions with
us. We also thank the anonymous reviewers for their helpful
comments.

References
[1] American National Standard of Accredited Standards Committee

ANSI NCITS T11.1 Technical Committee. Information Technology
– SCSI on Scheduled Transfer Protocol (SST) Work Draft. July 2001.

[2] D. Anderson, J. Chase, S. Gadde, A. Gallatin, K. Yocum, and
M. Feeley. Cheating the I/O Bottleneck: Network Storage with
Trapeze/Myrinet. In Proceedings of the Usenix Technical Confer-
ence. New Orleans, LA., 1998.

[3] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Informa-
tion and Control in Gray-Box Systems. In Symposium on Operating
Systems Principles, pages 43–56, 2001.

[4] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Nathan C.
Burnett, Timothy E. Denehy, Thomas J. Engle, Haryadi S. Gunawi,
James A. Nugent, and Florentina I. Popovici. Transforming policies
into mechanisms with infokernel. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages 90–105.
ACM Press, 2003.

[5] Suparna Bhattacharya, Steven Pratt, Badari Pulavarty, and Janet
Morgan. Asynchronous IO support in Linux 2.5. In Ottawa Linux
Symposium, Ottawa, ON, Canada, Jul 2003.

[6] Jose Carlos Brustoloni. Interoperation of copy avoidance in network
and file i/o. In INFOCOM (2), pages 534–542, 1999.

[7] Brent Callaghan, Theresa Lingutla-Raj, Alex Chiu, Peter Staubach,
and Omer Asad. NFS over RDMA. In Proceedings of the ACM
SIGCOMM workshop on Network-I/O convergence, pages 196–208.
ACM Press, 2003.

[8] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev
Thakur. PVFS: A Parallel File System for Linux Clusters. In Pro-
ceedings of the 4th Annual Linux Showcase and Conference, pages
317–327, Atlanta, GA, 2000. USENIX Association.

[9] Mallikarjun Chadalapaka, Hemal Shah, Uri Elzur, Patricia Thaler,
and Michael Ko. A study of iSCSI extensions for RDMA (iSER).
In Proceedings of the ACM SIGCOMM workshop on Network-I/O
convergence, pages 209–219. ACM Press, 2003.

[10] Avery Ching, Alok Choudhary, Wei keng Liao, Robert Ross, and
William Gropp. Efficient Structured Data Access in Parallel File
Systems. In Proceedings of the IEEE International Conference on
Cluster Computing, 2003.

[11] H. K. Jerry Chu. Zero-copy TCP in solaris. In USENIX Annual
Technical Conference, pages 253–264, 1996.

[12] Matt DeBergalis, Peter Corbett, Steve Kleiman, Arthur Lent, Dave
Noveck, Tom Talpey, and Mark Wittle. The Direct Access File Sys-
tem. In Second USENIX Conference on File and Storage Technolo-
gies. USENIX, April 2003.

[13] Peter Druschel and Larry L. Peterson. Fbufs: A High-Bandwidth
Cross-Domain Transfer Facility. In Symposium on Operating Sys-
tems Principles, pages 189–202, 1993.

[14] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole. Exoker-
nel: An operating system architecture for application-level resource
management. In Symposium on Operating Systems Principles, pages
251–266, 1995.

[15] Gregory R. Ganger. Blurring the Line Between Oses and Storage
Devices. CMU SCS Technical Report CMU-CS-01-166, December
2001.

[16] http://www.textuality.com/bonnie/. Bonnie: A File System Bench-
mark.

[17] Chuck Lever and Peter Honeyman. Linux NFS Client Write Per-
formance. In Proceedings of the Usenix Technical Conference,
FREENIX track, Monterey, June 2001.

[18] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase, A. Gal-
latin, R. Kisley, R. Wickremesinghe, and E. Gabber. Structure and
performance of the direct access file system. In Proceedings of
USENIX 2002 Annual Technical Conference, Monterey, CA, pages
1–14, June 2002.

[19] Mellanox Technologies. Mellanox IB-Verbs API (VAPI), Rev. 0.95,
March 2003.

[20] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. IO-Lite: A
Unified I/O Buffering and Caching System. ACM Transactions on
Computer Systems, 18(1):37–66, 2000.

[21] Gang Peng, Srikant Sharma, and Tzi cker Chiueh. A Case for
Network-Centric Buffer Cache Organization. In In Hot Interconnect
11, August 2003.

[22] PVFS2 Developer Team. Parallel Virtual File System, Version 2.
http://www.pvfs.org/pvfs2/, Nov. 2003.

[23] M. W. Sachs and A. Varma. Fibre Channel. IEEE Communications,
pages 40–49, Aug 1996.

[24] Prasenjit Sarkar, Sandeep Uttamchandani, and Kaladhar Voruganti.
Storage Over IP: When Does Hardware Support Help? In Second
USENIX Conference on File and Storage Technologies. USENIX,
April 2003.

[25] Muthian Sivathanu, Vijayan Prabhakaran, Florentina Popovici, Tim-
othy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Semantically-Smart Disk Systems. In Proceedings of the
Second USENIX Symposium on File and Storage Technologies (FAST
’03), San Francisco, CA, March 2003.

[26] Dragan Stancevic. Zero copy I: user-mode perspective. Linux Jour-
nal, 2003(105):3, 2003.

[27] Rajeev Thakur, William Gropp, and Ewing Lusk. On Implementing
MPI-IO Portably and with High Performance. In Proceedings of the
6th Workshop on I/O in Parallel and Distributed Systems, pages 23–
32. ACM Press, May 1999.

[28] Mustafa Uysal, Anurag Acharya, and Joel Saltz. Requirements of I/O
Systems for Parallel Machines: An Application-driven Study. Tech-
nical Report CS-TR-3802, Dept. of Computer Science, University of
Maryland, College Park, 1997.

[29] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. PVFS over
InfiniBand: Design and Performance Evaluation. In the 2003 Inter-
national Conference on Parallel Processing (ICPP 03), Oct. 2003.

[30] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. Support-
ing Efficient Noncontiguous Access in PVFS over InfiniBand. In
Proceedings of the IEEE International Conference on Cluster Com-
puting, 2003.

[31] Yuanyuan Zhou, Angelos Bilas, Suresh Jagannathan, Cezary Dub-
nicki, James F. Philbin, and Kai Li. Experiences with VI commu-
nication for database storage. In Proceedings of the 29th annual
international symposium on Computer architecture, pages 257–268.
IEEE Computer Society, 2002.

8


