

iSER Storage Target for
Object-based Storage Devices

Dennis Dalessandro
Ananth Devulapalli

Pete Wyckoff (speaker)

Ohio Supercomputer Center

{dennis,ananth,pw}@osc.edu

SNAPI '07
24 September 2007

Work supported by the National Science Foundation, #0621484

Storage Interconnects

● Locally Attached
– parallel SCSI
– SATA

● Fibre Channel
– dominates market

● iSCSI
– much smaller market, but growing

● iSER, SRP
– RDMA-specific SCSI transports

● AoE
– minimalist ethernet-based storage network

● Networks
– 1 Gb/s Ethernet
– 10 Gb/s Ethernet
– iWARP
– InfiniBand
– Myrinet

SCSI Architecture

and iWARPand iWARP

iSERiSER

RDMA
● Two major aspects

– Protocol Offload
● NIC handles network processing
● Removes biggest burden from host CPU

– Zero Copy (with or without OS bypass)
● Data is moved directly between network and user buffers

● TCP Offload Engine (TOE)
– TCP/IP stack processing offloaded
– CPU still moves data from buffers to user memory

● Remote Direct Memory Access (RDMA)
– TCP/IP offloaded (in iWARP, or replaced in IB)
– Data goes directly to and from user buffers

● Popular in High-Performance Computing
● Starting to get attention for other applications

OSD
● T10 Specification
● Stores objects
● User attributes
● Strong security
● Pure target device

● SCSI Features
– Bidirectional
– Extended CDBs

Parallel File System Design

● Direct-attach
● Serverless
● Low management

Architectural Overview

Data Flow

● Target initiates all data transfers
● Except for immediate, unsolicited data in write

iSER Design and Implementation

● Memory registration
● Event management
● Data completion semantics
● Padding

● Modifications to existing stgt project by FUJITA
Tomonori and others

● 18 separate patches for easier review
– infrastructure additions
– virtualization of aspects of iSCSI core
– more parameters to negotiate
– entire RDMA transport layer

Memory Registration
● Required for direct-access network protocols
● Act of registration is very slow: 30 to 100 μs

● Static registration makes sense for server

Event Management

● iSCSI target uses file descriptor polling
● One fd per connection
● Readable = incoming PDU
● Writeable = socket buffer space to send more
● Remember TX state using poll bits

● RDMA uses one fd for CQ notifications
● No concept of writeable

● Maintain separate list of ready-to-TX conns
● Non-zero counter drives progress engine
● Difficult to sequence state machine properly

Data Completion

● SCSI Read operation
– Initiator: issue Send request for a READ
– Target: receive Send request
– Target: issue RDMA Writes
– Target: issue Send response
– Initiator: receive Send response
– Initiator: are RDMA Writes finished?

● RDMA Write operations are not ordered with
respect to the response

● Add state:
– Target: wait for RDMA Writes to finish
– Target: issue Send response
– ...

● Messages (PDUs) consist of multiple segments

● iSCSI says segments must be four-byte aligned
● iSER is quiet about padding
● So, pad between segments, but not data
● Avoids significant complexity on initiator

Padding

● Request
– Header (48 bytes)
– Add'l header 1 (200 bytes)
– Add'l header 2 (8 bytes)
– Header digest (4 bytes)
– Data segment (7800 bytes)
– Data digest (4 bytes)

● Data-out
– Header (48 bytes)
– Header digest (4 bytes)
– Data segment (1 byte?)
– Data digest (4 bytes)

Experiments

● Tyan S2891 motherboard
● Dual 2.4 GHz Opteron
● 2 GB Memory
● 80 GB SATA
● Mellanox 4X SDR, switch
● Linux 2.6.22-rc5

– plus bidirectional patches
– plus little OSD bits
– plus AHS for TCP and iSER

● Linux 2.6.23-rc6
– stock for block experiments

● OpenFabrics libmthca, libibverbs, librdmacm

Latency

● Units in microseconds
● Differences arise from network latencies

– IB 7 us
– IPoIB 16 us
– TCP 40 us

● No data transfers, except getattr
– iSER does extra round-trip
– no phase collapse

Single-client Read Throughput

● Only one command outstanding
● Gradual drop-off from cache effects in target

Single-client Write Throughput

● Generally writes are slower
● Extra time for RDMA Read vs Write?

Multi-client Throughputs

● 200 kB message size, increasing clients
● MPI used for synchronization, timing

Read Write

Block Experiments

● Higher than OSD latencies due to bs_sync
● Notice 10 μs read penalty for iSER

– no phase collapse for small response data

● Replace OSD back-end with block back-end
● Different (and more usual) SCSI command set
● Latency, 16-byte Write or Read operations:

Initiator Interface Effects

● Initiator matters at high speed

● Three different ways to issue commands
– Block: read and write to /dev/sdb
– SG: ioctl(SG_IO) to /dev/sgN
– BSG: ioctl(SG_IO) to /dev/bsg/sdb

● Actually more, and variations.

● Same setup for each of GigE, IPoIB, iSER
● Single command outstanding
● Read/write same block, stays in RAM

GigE

Reads faster than writes: one or two fewer round-trips

IPoIB

Writes faster than reads(!)

iSER

Reads faster than writes as one would expect.
Interface effect visible. Cache inval on write. Cache copy on read.

Timing Analysis

SCSI Read, 350 kB

SCSI Read, 500 kB

SCSI Write, 400 kB

Multiple-command Performance

● Block drivers issue multiple SCSI commands
● Current iSCSI maximum 128
● More, smaller transfers for pipelining

● Look at BSG performance
● Single client again

iSER Multiple Commands

Great overlap possibility for write.
Little overlap for read, side effect of RX vs TX ordering.

Threading on the Target

● Use worker threads for IO
– 1 SCSI thread
– 4 IO threads
– 1 IO completion thread

● Default configuration of tgt ("bs_sync")

● Inter-thread communication somewhat
expensive

● Cost amortized when multiple commands
present

iSER Threaded Target

Reads proceed at line rate.
Writes limited by slower RDMA Read operation, target queuing.

Related Work

● Voltaire
– Good initiator work
– Proprietary iSER target

● Other IB transports
– SRP for point-to-point in DDN et al.
– Custom protocols for PVFS, Lustre

● Sun
– Initiator and target iSCSI work

● Intel folks
– Allocate host CPU to iSCSI stack processing
– CRC-32c is expensive for TCP
– IB and iWARP transport layer provides checksum

Future Work
● iWARP

– Current linux initiator depends on FMR
– Opportunity to use iWARP STAG invalidate
– Zero-based VA issues

● Memory requirements and flow control
– Space for 128 outstanding commands per conn
– Plus RDMA static buffers to reply to those
– Only need a few for overlap
– Linux initiator does not support MaxOutstUnexPDU

● SRP
– Alternate RDMA transport for SCSI

Pull code from git://git.osc.edu/tgt
Browse source at http://git.osc.edu/?p=tgt.git

Mail issues to pw@osc.edu

