ISER Storage Target for
Object-based Storage Devices

Dennis Dalessandro
Ananth Devulapalli
Pete Wyckoff (speaker)

Ohio Supercomputer Center
{dennis,ananth,pw}@osc.edu

SNAPI ‘07

24 September 2007
Work supported by the National Science Foundation, #0621484

Storage Interconnects

Locally Attached * Networks

- parallel SCSI - 1 Gb/s Ethernet
_ SATA - 10 Gb/s Ethernet
Fibre Channel = IR

- dominates market - InfiniBana
iSCS| - Myrinet

- much smaller market, but growing

ISER, SRP

- RDMA-specific SCSI transports

AoE

- minimalist ethernet-based storage network

SCSI Architecture

SCSI Block Reduced SCSI Stream SCSI Media Multi-Media SCSI Controller
Commands Block Commands Changer Commands Commands Commands
|e.q., disk drive) Commands |e.g., tape drive) (e.g., jukebox) (e.g., DVD) (e.g., RAID)
(SBC, SBC-2, (e.g., disk drive) (SSC, §SC-2, (SMC, SMC-2, SMC-3 (MMC, MMC-2, MMC-3, (SCC-2)
SBC-3) (RBC, RBC AM1) 55C-3) MMC-4, MMC-5,MMC-6)
SCSE.: EnE:Iusure Object-Based Bridge Controller Automation Drive
ervices St Devi C d Interface — C d
(SES, SES AM1 orage Device ommands nterface — Commands
: ’ (OSD, 0SD-2) (BCC) (ADC, ADC-2, ADC-3)
SES-2)
Primary Commands (for all devices)
(SPC, SPC-2, SPC-3, SPC4)
Architecture Model (SAM, SAM-2, SAM-3, SAM-4)
|
| I | I] | l
sCsl Serial Bus Fibre SSA SCSI
Parallel Protocol Channel SCSI-3 RDMA
Interface (SBP-2, SBP-3) Protocol Protocol Protocol
(SPI-2, SPI14, (FCP, FCP- (S5A-53P) (SRP)
SP1-3) 2, FCP-3, Serial Automation
= “"R""I“t" 5" = FCP-4) Attached Drive
elate Scsl Interface -
standards and SSA-TL2 (SAS, Transport
technical I SAS-1.1, Protocol
reports (SDV, Fibre SAS-2) (ADT,
PIP, SSM, Channel SSA-PH1 or InfiniBand Internet ADT-2)
S$SM-2, EPI) IEEE 1394 (FC) SSA-PH2 (tm) nrerne

and IWARP

RDMA

 TWO major aspects

- Protocol Offload
* NIC handles network processing
 Removes biggest burden from host CPU

— Zero Copy (with or without OS bypass)
» Data is moved directly between network and user buffers

 TCP Offload Engine (TOE)

- TCP/IP stack processing offloaded
- CPU still moves data from buffers to user memory

 Remote Direct Memory Access (RDMA)
- TCP/IP offloaded (in IWARP, or replaced in IB)
- Data goes directly to and from user buffers

* Popular in High-Performance Computing
» Starting to get attention for other applications

T10 Specification
Stores objects
User attributes
Strong security
Pure target device

SCSI Features

— Bidirectional
- Extended CDBs

OSD

Componenet

File System User

Data Storage
Management

Sector/LBA

OSD Interface

Interface

--

Block Based Disk

Block 1/C

Storage Medium

Object Based Disk

Data (Object)
storage
Management

Block 1/C

Storage Medium

Parallel File System Design

Metadata Servers IO Servers

0 O U » Direct-attach

e Serverless

T T * Low management
Storage Area Network
| L L L Directory Server
Stock PVFS D, D, D D D, -
E/ Meta and data OSDs
e wen (v
T
Storage Area Network
= £ | EE
Distributed)))) m
OSD MDS

Architectural Overview

Target
Initiator m
PVES dd, cat ISCSI OSD block
I ‘ / \
OSD library sg_dd _
ISCSI_tcp ISCSI _rdma
Z f User Space I
Kernel Space
BSG SG disk ext3
TCP
SCSI Mid-layer <
: Ethernet IB or iWARP
ISCSI
TCP iISER

! !

Ethernet IB or iWARP

Data Flow

Read request Write request
RDMA Write o
/ Unsolicited data

/

RDMA Read

YY

.

y Response

» Target Iinitiates all data transfers
* Except for iImmmediate, unsolicited data in write

ISER Design and Implementation

« Memory registration
 Event management

« Data completion semantics
e Padding

* Modifications to existing stgt project by FUJITA
Tomonori and others

» 18 separate patches for easier review
— Infrastructure additions
— virtualization of aspects of ISCSI core
- more parameters to negotiate
- entire RDMA transport layer

1000

800 r

Bandwidth (MB/s)

200 B ,r’

600

400 ¢

0 /

Memory Registration

* Required for direct-access network protocols
» Act of registration is very slow: 30 to 100 ps

Pre-registered buffers
Unregistered buffers ------

——————

—_——— T T

0

200

400 600 800
Message size (kB)

1000

e Static registration makes sense for server

Event Management

e ISCSI target uses file descriptor polling

* One fd per connection

 Readable = incoming PDU

* Writeable = socket buffer space to send more
« Remember TX state using poll bits

« RDMA uses one fd for CQ notifications
* No concept of writeable

 Maintain separate list of ready-to-TX conns
* Non-zero counter drives progress engine
 Difficult to sequence state machine properly

Data Completion

« SCSI| Read operation
= In|t|ator Issue Send request for a READ
- Target: receive Send request
- Target: issue RDMA Writes
— Target: issue Send response
- Initiator: receive Send response
- Initiator: are RDMA Writes finished?
« RDMA Write operations are not ordered with
respect to the response

* Add state:
- Target: wait for RDMA Writes to finish
- Target: issue Send response

Padding

Messages (PDUSs) consist of multiple segments
Request e Data-out

- Header (48 bytes) =
- Add'l header 1 (200 bytes) -
- Add'l header 2 (8 bytes) =
- Header digest (4 bytes) =
- Data segment (7800 bytes)

- Data digest (4 bytes)

Header (48 bytes)
Header digest (4 bytes)
Data segment (1 byte?)

Data digest (4 bytes)

ISCSI says segments must be four-byte aligned

ISER IS quiet about padding

So, pad between segments, but not data
Avoids significant complexity on initiator

Experiments

 Tyan S2891 motherboard
* Dual 2.4 GHz Opteron

« 2 GB Memory

80 GB SATA

Mellanox 4X SDR, switch

Linux 2.6.22-rc5

- plus bidirectional patches

- plus little OSD bits

- plus AHS for TCP and ISER
e Linux 2.6.23-rc6

- stock for block experiments

 OpenFabrics liomthca, libibverbs, librdmacm

Latency

OSD command TCP IPolB IB

Ping 86.94 + 3.87 36.42 + 3.63 33.27 £ 3.53
Create 265.26 + 9.81 | 220.11 = 3.59 | 206.76 += 3.05
Remove 257.36 =17.61 | 215.36 £11.02 | 201.05 £ 14.74
Getattr 143.89 + 2.74 85.51 = 1.58 65.41 + 0.63
Setattr 238.54 +53.55 | 201.27 £ 3.18 | 175.14 £ 2.65

e Units In microseconds

e Differences arise from network latencies

- IB 7 us

- |PolB 16 us

- TCP 40 us
 No data transfers, except getattr

- ISER does extra round-trip

- no phase collapse

Single-client Read Throughput

InfiniBand ———+—

BO0O IPoIB = _|
Gige H—%—
700 -
600 [—
@ e
< 500 |- =4 —
= ++—¢*i"'=++‘+==+++—++
£ /
S 400 - # -
2
£
'_

300

200 |/ 34|
100 :%ﬁ@**@&%9%*H€*ﬁ6%ﬁ6Kﬁ6E¥ﬂ6%ﬂ6%ﬁ6K%9E%ﬁeﬁﬁeﬁﬁeﬁﬁé€¥%eﬁﬁéﬁﬁﬁeﬁ
0 | | | | |

0 100 200 300 400 500

Message size (KB)

* Only one command outstanding
» Gradual drop-off from cache effects In target

InfiniBand ——+—
IPoIB ¢
GigE —k—

—
i
a
=
—
5
o
=
o
=
o
=
=
|—

300

Message size (KB)

InfiniBand —+— InfiniBand —+—
IPoIB —>%— IPoIB —<—
Gigg —X— Gigg —%—

Throughput (MB/s)

»
—_—
as]
=
e
—
=
o
-
o
=]
o
B
e
-

8 10 12 14 16 18

Number of clients Number of clients

Block Experiments

 Replace OSD back-end with block back-end
 Different (and more usual) SCSI command set
e Latency, 16-byte Write or Read operations:

Write Read
Gigk | 113 pus &= 15 us | 112 us £+ 14 us
IPol3 64 us = 1 us 62 us = 1 us
ISER 46 s = 1 S 00 s = 1 S

* Higher than OSD latencies due to bs sync

* Notice 10 ps read penalty for ISER
- no phase collapse for small response data

Initiator Interface Effects

* |nitiator matters at high speed

* Three different ways to issue commands

- Block: read and write to /dev/sdb
- SG: loctl(SG_IO) to /dev/sgN
- BSG: Ioctl(SG _10) to /dev/bsg/sdb

» Actually more, and variations.

 Same setup for each of GIigE, IPolB, ISER
» Single command outstanding
* Read/write same block, stays in RAM

w
—
814]
=
o
)
=
Q
=
=)}
=
o
T
=
=

GigE Block write
GigE SG write
GigE BSG write
GigE Block read
GigE SG read
GigE BSG read

w
—
814]
=
o
)
=
Q
=
=)}
=
o
T
=
=

IPoIB Block write
IPoIB SG write
IPolB BSG write
IPoIB Block read
IPoIB SG read
IPoIB BSG read

w
—
814]
=
o
)
=
Q
=
=)}
=
o
T
=
=

iISER Block write
ISER SG write
ISER BSG write
ISER Block read
ISER SG read
ISER BSG read

SCSI Read, 350 kB

Timing Analysis

SCSI Write, 400 kB

Ack

15 s

Time | Bandwidth
Total 564 us | 635 MB/s
Initiator 71 us
pread 94 us | 3810 MB/s
RDMA write | 387 us | 930 MB/s
Ack 12 us

SCSI Read, 500 kB

Time | Bandwidth
Total 945 us | 540 MB/s
Initiator 060 us
pread 315 us | 1625 MB/s
RDMA write | 550 us | 930 MB/s

Time | Bandwidth
Total 1020 ps | 500 MB/s
Initiator 75 us
pwrite 492 ps | 1040 MB/s
RDMA read | 440 ps | 1100 MB/s
Ack 12 us

Multiple-command Performance

* Block drivers issue multiple SCSI commands
e Current ISCSI maximum 128
* More, smaller transfers for pipelining

* Look at BSG performance
» Single client again

ISER Multiple Commands

1000 . :
_T—., - —-— = e et ___._E“.-"_-_—_I- _ﬂ:é:
900 | . iﬂ S
800
—~ 700
n
*)
= 600
H
S 500
S
© 400 (i 1 command write ——
= | 2 command write
300 | 4 command write — T
: 8 command write
200 1 command read —— .
2 command read —
100 4 command read — :
8commandread ——
0 L I
0 128 256 384

Transfer size (kB)

Great overlap possibility for write.

Little overlap for read, side effect of RX vs TX ordering.

512

Threading on the Target

Use worker threads for 10
- 1 SCSI thread

- 4 10 threads

- 1 10 completion thread

Default configuration of tgt ("bs_sync")

Inter-thread communication somewhat
expensive

Cost amortized when multiple commands
present

ISER Threaded Target

1000 ' '
900 |
800 |
700 |
wn .
4]
= 600 [
3 I
S 500 | 3
S g . - .t
S 400 [if command write —]
= | 2 command write
300 (I} 4 command write —— -
j' 8 command write
200 [# 1 command read — .
’ 2 command read ——
100 4 command read — .
Scommandread —
0 | |
0 128 256 384 512

Reads proceed at line rate.

Transfer size (kB)

Writes limited by slower RDMA Read operation, target queuing.

Related Work

* Voltaire
— Good Iinitiator work
- Proprietary ISER target
e Other IB transports
- SRP for point-to-point in DDN et al.
— Custom protocols for PVFS, Lustre
e Sun
- Initiator and target iISCSI| work
* Intel folks

— Allocate host CPU to ISCSI stack processing
- CRC-32c Is expensive for TCP
- IB and IWARP transport layer provides checksum

Future Work

 IWARP
— Current linux initiator depends on FMR
— Opportunity to use IWARP STAG invalidate
- Zero-based VA issues

 Memory requirements and flow control
- Space for 128 outstanding commands per conn
- Plus RDMA static buffers to reply to those
- Only need a few for overlap
— Linux initiator does not support MaxOutstUnexPDU

e SRP
— Alternate RDMA transport for SCSI

Pull code from git://git.osc.edu/tgt
Browse source at http.//git.osc.edu/?p=tgt.git
Mail issues to pw@osc.edu

