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Storage Interconnects

Locally Attached * Networks

- parallel SCSI - 1 Gb/s Ethernet
_ SATA - 10 Gb/s Ethernet
Fibre Channel = IR

- dominates market - InfiniBana
iSCS| - Myrinet

- much smaller market, but growing

ISER, SRP

- RDMA-specific SCSI transports

AoE

- minimalist ethernet-based storage network
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RDMA

 TWO major aspects

- Protocol Offload
* NIC handles network processing
 Removes biggest burden from host CPU

— Zero Copy (with or without OS bypass)
» Data is moved directly between network and user buffers

 TCP Offload Engine (TOE)

- TCP/IP stack processing offloaded
- CPU still moves data from buffers to user memory

 Remote Direct Memory Access (RDMA)
- TCP/IP offloaded (in IWARP, or replaced in IB)
- Data goes directly to and from user buffers

* Popular in High-Performance Computing
» Starting to get attention for other applications



T10 Specification
Stores objects
User attributes
Strong security
Pure target device

SCSI Features

— Bidirectional
- Extended CDBs
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Parallel File System Design

Metadata Servers IO Servers

0 O U » Direct-attach

e Serverless
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Architectural Overview

Target
Initiator m
PVES dd, cat ISCSI OSD block
I ‘ / \
OSD library sg_dd _
ISCSI_tcp ISCSI _rdma
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TCP
SCSI Mid-layer <
: Ethernet IB or iWARP
ISCSI
TCP iISER

! !

Ethernet IB or iWARP




Data Flow

Read request Write request
RDMA Write o
/ Unsolicited data

/

RDMA Read

YY

.

y Response

» Target Iinitiates all data transfers
* Except for iImmmediate, unsolicited data in write




ISER Design and Implementation

« Memory registration
 Event management

« Data completion semantics
e Padding

* Modifications to existing stgt project by FUJITA
Tomonori and others

» 18 separate patches for easier review
— Infrastructure additions
— virtualization of aspects of ISCSI core
- more parameters to negotiate
- entire RDMA transport layer
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* Required for direct-access network protocols
» Act of registration is very slow: 30 to 100 ps
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e Static registration makes sense for server



Event Management

e ISCSI target uses file descriptor polling

* One fd per connection

 Readable = incoming PDU

* Writeable = socket buffer space to send more
« Remember TX state using poll bits

« RDMA uses one fd for CQ notifications
* No concept of writeable

 Maintain separate list of ready-to-TX conns
* Non-zero counter drives progress engine
 Difficult to sequence state machine properly



Data Completion

« SCSI| Read operation
= In|t|ator Issue Send request for a READ
- Target: receive Send request
- Target: issue RDMA Writes
— Target: issue Send response
- Initiator: receive Send response
- Initiator: are RDMA Writes finished?
« RDMA Write operations are not ordered with
respect to the response

* Add state:
- Target: wait for RDMA Writes to finish
- Target: issue Send response




Padding

Messages (PDUSs) consist of multiple segments
Request e Data-out

- Header (48 bytes) =
- Add'l header 1 (200 bytes) -
- Add'l header 2 (8 bytes) =
- Header digest (4 bytes) =
- Data segment (7800 bytes)

- Data digest (4 bytes)

Header (48 bytes)
Header digest (4 bytes)
Data segment (1 byte?)

Data digest (4 bytes)

ISCSI says segments must be four-byte aligned

ISER IS quiet about padding

So, pad between segments, but not data
Avoids significant complexity on initiator



Experiments

 Tyan S2891 motherboard
* Dual 2.4 GHz Opteron

« 2 GB Memory

80 GB SATA

Mellanox 4X SDR, switch

Linux 2.6.22-rc5

- plus bidirectional patches

- plus little OSD bits

- plus AHS for TCP and ISER
e Linux 2.6.23-rc6

- stock for block experiments

 OpenFabrics liomthca, libibverbs, librdmacm




Latency

OSD command TCP IPolB IB

Ping 86.94 + 3.87 36.42 + 3.63 33.27 £ 3.53
Create 265.26 + 9.81 | 220.11 = 3.59 | 206.76 += 3.05
Remove 257.36 =17.61 | 215.36 £11.02 | 201.05 £ 14.74
Getattr 143.89 + 2.74 85.51 = 1.58 65.41 + 0.63
Setattr 238.54 +53.55 | 201.27 £ 3.18 | 175.14 £ 2.65

e Units In microseconds

e Differences arise from network latencies

- IB 7 us

- |PolB 16 us

- TCP 40 us
 No data transfers, except getattr

- ISER does extra round-trip

- no phase collapse




Single-client Read Throughput
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* Only one command outstanding
» Gradual drop-off from cache effects In target
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Block Experiments

 Replace OSD back-end with block back-end
 Different (and more usual) SCSI command set
e Latency, 16-byte Write or Read operations:

Write Read
Gigk | 113 pus &= 15 us | 112 us £+ 14 us
IPol3 64 us = 1 us 62 us = 1 us
ISER 46 s = 1 S 00 s = 1 S

* Higher than OSD latencies due to bs sync

* Notice 10 ps read penalty for ISER
- no phase collapse for small response data



Initiator Interface Effects

* |nitiator matters at high speed

* Three different ways to issue commands

- Block: read and write to /dev/sdb
- SG: loctl(SG_IO) to /dev/sgN
- BSG: Ioctl(SG _10) to /dev/bsg/sdb

» Actually more, and variations.

 Same setup for each of GIigE, IPolB, ISER
» Single command outstanding
* Read/write same block, stays in RAM
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SCSI Read, 350 kB

Timing Analysis

SCSI Write, 400 kB

Ack

15 s

Time | Bandwidth
Total 564 us | 635 MB/s
Initiator 71 us
pread 94 us | 3810 MB/s
RDMA write | 387 us | 930 MB/s
Ack 12 us

SCSI Read, 500 kB

Time | Bandwidth
Total 945 us | 540 MB/s
Initiator 060 us
pread 315 us | 1625 MB/s
RDMA write | 550 us | 930 MB/s

Time | Bandwidth
Total 1020 ps | 500 MB/s
Initiator 75 us
pwrite 492 ps | 1040 MB/s
RDMA read | 440 ps | 1100 MB/s
Ack 12 us




Multiple-command Performance

* Block drivers issue multiple SCSI commands
e Current ISCSI maximum 128
* More, smaller transfers for pipelining

* Look at BSG performance
» Single client again



ISER Multiple Commands
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Threading on the Target

Use worker threads for 10
- 1 SCSI thread

- 4 10 threads

- 1 10 completion thread

Default configuration of tgt ("bs_sync")

Inter-thread communication somewhat
expensive

Cost amortized when multiple commands
present



ISER Threaded Target
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Related Work

* Voltaire
— Good Iinitiator work
- Proprietary ISER target
e Other IB transports
- SRP for point-to-point in DDN et al.
— Custom protocols for PVFS, Lustre
e Sun
- Initiator and target iISCSI| work
* Intel folks

— Allocate host CPU to ISCSI stack processing
- CRC-32c Is expensive for TCP
- IB and IWARP transport layer provides checksum




Future Work

 IWARP
— Current linux initiator depends on FMR
— Opportunity to use IWARP STAG invalidate
- Zero-based VA issues

 Memory requirements and flow control
- Space for 128 outstanding commands per conn
- Plus RDMA static buffers to reply to those
- Only need a few for overlap
— Linux initiator does not support MaxOutstUnexPDU

e SRP
— Alternate RDMA transport for SCSI

Pull code from git://git.osc.edu/tgt
Browse source at http.//git.osc.edu/?p=tgt.git
Mail issues to pw@osc.edu




