Memory Registration Caching Correctness

Pete Wyckoff Jiesheng Wu
Ohio Supercomputer Center Ask Jeeves
1224 Kinnear Road 170 Knowles Drive
Columbus, OH 43212 Los Gatos, CA 95032
pw@osc.edu jwulask jeeves.com

Abstract— Fast and powerful networks are becom- Recently, though, with increasing capabilities of
ing more popular on clusters to support applica- external devices, this traditional OS-mediated inter-
tions including message passing, file systems, andaction has become a bottleneck. Network interfaces
databases. These networks require special treatment, narticular encounter severe limitations. While
by the operating system to obtain high throughput ., 1o dity hardware exists to transmit data at
and low IaFenCy‘ n part'c.l"lar’ ap.phcat'on MemOY 10 Gbis with latencies of under fis, these rates
must be pinned and registered in advance of use. ; '
However, popular communication libraries such as cannot be achieved by a userspace process when
MPI have interfaces that do not require explicit accessing the device through the intermediary of
registration calls from the user, thus the libraries the operating system.
must manage this aspect themselves. Many network devices now exist that provide

Registration caching is a necessary and effective “\OS pypass” mechanisms to permit users to ma-
tool to reuse memory registrations and avoid the pjpylate the devices directly and invoke incoming
overheads of pinning and unpinning pages around o4 tg0ing transfers. This is intended to reduce
every send or receive. Current memory registration)
caching schemes do not take into account the fact thet overheads and_.thl.JS Iaten(iy for Smajl .opgrat.lons.
the user has access to a variety of operating systemAnOther ca_lpablllty IS caIIed_ zero copy”, indicating
calls that can alter memory layout and destroy earlier that there is no extra buffering between the network
cached registrations. The work presented in this card and the user application buffers, unlike typical
paper fixes that problem by providing a mechanism OS-mediated communication paths that include at
for the operating system to notify the communication least one extra buffer, thus one extra memory copy.
library of changes in the memory layout of a pro- Eliminating memory copies increases the effective
cess while_ preserving existing application semantics. throughput obtained by the application [1]. These
This permits the safe and accurate use of memory o jigent network interfaces support many features
registration caching.) :

to decrease the overhead incurred by the user appli-
|. USER-CONTROLLED NETWORK INTERFACES cation on each transfer, such as scatter/gather, chan-

Computing systems have always had a varietel and memory semantics, and atomic operations.
of devices attached to them to interact with th€urrently available network interface cards (NICs)
external world, including local and wide area netthat fall into this category are Myrinet [2], Quadrics
work adapters, disk drive controllers, and user inp@sNet [3], and InfiniBand [4], among others.
devices. These are almost always controlled by theWe describe implementation experiences with In-
operating system (OS), in the sense that the QiiBand in this paper. The InfiniBand Architecture
mediates all interactions of the device with the reslefines a system area network for interconnecting
of the system. For example, when a user wam®des that provide compute or storage resources.
to read a block from a disk, the user invokes aim its connected mode of operation, each Infini-
OS interface that in turn issues a command ®and NIC maintains a send queue and a receive
the device to put the block into a certain locatiogqueue for communication with the peer. As the user
of memory. It orchestrates all data motion andpplication posts work requests to the queue pair,
“knows” what parts of memory will be changedhe NIC performs the requests asynchronously and
by outstanding device requests. places status information, if requested, on a comple-

tion queue. Channel semantics require the receiverperform high-speed data transfers, many library
to prepost a receive descriptor before the sendmmd application writers are motivated to provide a
posts the corresponding send. Memory semanticache infrastructure to avoid the need to deregister
require only one side to be involved in the datand later reregister the same memory regions. This
transfer: Remote Direct Memory Access (RDMAWworks quite well in terms of performance, but the
write operations move data into the memory of theache has many fundamental problems in light of
peer directly and RDMA read operations fill locathe full Unix VM system. Caching is described in
memory from peer memory, both without activaletail in Section IV.

participation of the remote CPU. Current hardware

provides 1 GB/s of user data throughput with one- !ll. LINUX MEMORY MANAGEMENT
way small message transfer latencies of aroundThjs section gives a brief overview of the behav-
S ps. ior of a virtual memory system, and in particular,

that of the Linux kernel, version 2.6.9. Many details
are overlooked here for simplicity of presentation.

Users of zero-copy devices must coordinate with Virtual memory (VM) [5] is a mechanism to
the OS to register memory regions needed ferovide to each application the illusion of a full
communication. The goal of memory registratioB2- or 64-bit address space but allow sharing of a
is twofold: first, to allocate physical pages fosignificantly smaller amount of physical memory.
process virtual memory and ensure they will ndt involves hardware support to divide physical
be swapped out; and second, to obtain the mappimgmory into blocks (pages or segments) and to
of virtual addresses to physical addresses to provigevide a protection scheme to restrict access only
to the NIC. to particular processes. Hardware structures such as

The InfiniBand kernel module and userspace liranslation look-aside buffers and page-table walk-
braries offer a set of basic calls to perform memorgrs exist to speed up access to virtual to physical
registration management. To register memory feaemory maps.
use in later transfers, an application supplies aThe use of VM in modern computing systems is
buffer address and length and receives in return aa deeply ingrained that it would be highly unlikely
opaque handle that is used later to deregister tthat application programmers would give it up for
memory region. The registration call also returnthe sake of speeding up network communications;
two more opaque keys, one for local access ahence, we consider in this paper ways to encourage
one for remote access, that can be delivered to otliee cooperation of user-controlled NICs and the
software components and other machines to perriviM system.
them to access the memory region.

Figure 1(a) shows the effect of memory regi
tration calls on basic InfiniBand performance. The Traditional Unix semantics offer a variety of
upper curve shows the throughput obtained whdibrary and system calls by which a process can
all the memory is registered in advance of the teshanipulate its virtual memory layout.
and the lower curve includes the time to register and The system callmmap was first designed for
deregister each memory region during the test. Th@apping files into a process address space, but
difference between these curves can be understamslv is a general-purpose mapping facility that
by examining Figure 1(b), which shows the timean be used for anonymous or shared memory,
for the registration and deregistration calls. Thedies, and hardware devices. This call has many
delays, while small, are significant on the time scajgarameters by which one can specify memory pro-
of the transfer and cause low throughput valuasction, suggested mapping location, file descriptor
shown in Figure 1(a). representing the target file or device, and extent of

Because memory registration and deregistratidhe range. To undo a mapping, the calinmap is
operations are so expensive compared to the timsed.

[I. MEMORY REGISTRATION

A. System calls

1000

350

300 -
800
N Pre-registered buffers 250
g Unregistered buffers —-----
€ 600 .
s > @ 200 f
= ° Registration
-'g E s Deregistration ------
© 400} F I
©
o [
) 100 " e
2000/ A4
7 50 b
0 § 1 1 1 1 1 0 1 1 1 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000
Message size (kB) Message size (kB)
Fig. 1. (a) Impact of memory registration and deregistration on bandwidth. (b) Costs of memory registration and deregistration.

Specialized versions of these basic functionsjemory to be deallocated or remapped.
called brk and sbrk, were used traditionally to o
change the data segment size. Now they ess&h-Memory pinning

tially call mmap andmunmap to manipulate memory As discussed in Section Il, memory registration
around a certain point in the address space. Us@g§sheeded both to translate virtual to physical ad-
generally use the library caltsa11oc andfree that dresses for the NIC and to ensure that that mapping
in turn invoke these system interfaces to change thémains constant across the lifetime of network op-
VM. erations involving the affected memory. The Linux
Other less-often used calls can manipulate théM provides an OS function that achieves both
VM space also.Mremap can enlarge, shrink, orthese objectivesgét _user_pages), but it also pro-
move a regionvprotect will change the protection vides to applications system calls that can change
bits of a region, regulating the ability of the procesthe virtual to physical address mappings, foiling any
to read, write, or execute the contents. To inform thettempt at caching by a library.
VM system that a region must not be swapped out An alternative option to pinning user memory
to disk,mlock andmunlock are provided as well asis to provide preregistered regions allocated by the
versions that affect all currently mapped memorys for the use of the application in communicating
These usually require some sort of extra permigsith the device. This is the approach used by other
sions not held by typical user processes. Therardware-intensive systems, such as cameras and
are alsoshmat and shmdt to access system-widevideo frame buffers. It is not suitable for the types
shared memory, and various real-time POSIX [@]f applications that use high performance network-
extensions to control typed memory objects. ing, though, because the APIs there have been
Finally, process and thread creation and destrudeveloped to accommodate the use of arbitrary user
tion events cause changes to the VM layout. Imemory in send and receive operations. Message
particular, fork and vfork create a new processpassing codes that use, for example, MPI [7], a
by duplicating the VM of the current process. Mospopular communication library, do not know until
implementations use the copy-on-write techniqueintime which parts of the address space will be
to avoid copying all the process memory unlessent or received to other processes. This situation
necessary. The Linuxlone is a superset of processs also found in file systems that implemettad
and thread creation with options to specify potenti@nd write without intermediate buffers, including
sharing of parts of the VM space by the newly crdDAFS [8] and PVFS2 [9].
ated and original process. Implicitly, the operating Performance is another reason to require the use
system will further grow and shrink the stack obf an arbitrary part of the process address space:
each process as needed, leading to another way dofile system read operation issued by the user

provides a destination buffer calculated at runtimés that applications are constrained to use this
If the data from the network appears in a differerdne particulamalloc implementation. Frequently

pre-pinned buffer, a memory copy to move the dafar debugging or validation, programmers will use
to its real destination must follow, but this extranalloc replacements such as Electric Fence [12] or
copy considerably degrades overall performancedmalloc [13] to track and display memory usage by

their applications. This sort of debugging is made
V. MEMORY REGISTRATION CACHING impossible by this approach.

When the communication device requires mem- FOr users of the GNU C library [14], itsalloc
ory registration but the API used by the applicdMplementation provides hooks by which a callback

tion does not demand explicit registration calld0 & user-provided function occurs upon entry to any
caching [10] is a common mechanism used to avofif the malloc-related routines. This permits some
the performance penalty illustrated in Figure 1(ajnore flexibility by retaining the system-provided
However, unexpected changes to the VM may occlip 1 1oc but suffers the same problems described
due to application behavior not directly related t§P0Ve plus a new one: the hook foree does not
communications. provide the size of the originally allocated object,
A simple way to avoid these unexpected chang&&auinng elther_ an_other table to cache the size from
by the application is to disable all calls that modifia11oc Or probing internal structures of the.l1oc
the virtual memory layout. Codes that are compiledtPlementation to discover it. This is the approach
statically and do not make VM-related system call¢s€d by mvapich [15], an implementation of MPI
as described above lend themselves to an ed¥y!NfiniBand. A different approach offered by the
registration caching solution: at the first call to £NU C library is to usenallopt to restrict it to
communication library, look up the affected memdSing only sbrk, not mmap, and never to return
ory range in a private cache and register it if it i§’€mory to the operating system. This avoids the

not found. Deregistration is not necessary unless thge¢ Problem but adds serious restrictions to pro-
total number of registrations or amount of pinnef€SS growth in address space-limited architectures

memory exceed system-imposed limits. This clad§€ the 32-bit Intel XS?_-) .

of code is becoming increasingly rare, but some Another way to get “in front” of VM-modifying
older applications written in FORTRAN 77 [11],calls is to include symbols in the communication
for example, would still work with this approach. library that override the default weak symbols pro-

Since the bulk of VM activity is initiated by userVided by the C library formmap, mremap, and so
calls tomalloc and free, a common approach in©" This approach works, but not for calls initiated
the past has been to focus only on this subset B the C library itself. So for instance, ifalloc
the overall problem. By replacing the standard €' @ny other routine that allocates memory on the
library calls at link- or run-time, a communicationUSer's behalf needs to usenwp, it calls into the
library can keep track of the state of memogﬁ%"brary_ internal symbol_mmap which can not
affected by these calls and safely cache registratiofe 0verridden. Furthermore, not all of the VM-
of regions used for messaging. Calls teee by mod_lfylng calls are exported via weak §ymbo|s, in-
the application will cause the library to deregistef!Uding shmat andmlock, and intercepting system
the memory before releasing it to the operating?!!S in this way requires parsing all the parameters
system for reuse. This is the approach used B@ain since the behavior fammap in particular
the Myrinet drivers, among others. There are tw§i€s considerably depending on its many inputs.
major problems with this approach: first, not all
memory activity is initiated by calls tamalloc
and free. Of the list in Section IlI-A, some of The approach presented in this paper does not
the most common nomalloc activity found in alter themalloc library or in any way restrict
applications are file mappings, shared memory, attte activities of the user-space application—it may
process stack changes. The second major problsafely use the entire suite of VM calls provided

V. LINUX VM INTERACTIONS

by the OS. Instead we take advantage of featureginiBand hardware, although similar mechanisms
in the Linux virtual memory subsystem to receivare used by most network implementations.
notification of “significant” VM changes in pro- The InfiniBand driver library provides routines
cesses and manage cached registrations using that a user application or communication library
information. calls to register and unregister memory. These
Our module uses only currently exported publifunctions save a considerable amount of local state
kernel interfaces. No modifications to a stock kernéh userspace tables as well as in the kernel mod-
tree of any sort are required. Restricting ourselvese, called “mosal,” that actually does the locking.
to use of just the exported interface makes modufr our implementation we chose not to alter the
maintenance much easier as the kernel evolvesrassal kernel-level driver or user library. Suggested
no patch is required for each particular release whprovements from integration are described in
the kernel. Possibilities for optimization that d&ection VIII.
need changes in the kernel core are discussed irmhe mosal driver uses two mechanisms provided
Section VIII, however. by the Linux kernel to pin physical pages. The
first is to increase the reference count in the page

_ structure. The mechanisms that come into play
There are a few major data structures that ragKiing memory pressure are careful never to free

the state of process memory allocations in Linu’%uch pages. They also set the LOCKED flag in the

Each process has a list of virtual memory aregy as of processes by calling essentiatiyock on
structures (VMAs). Each area describes a contigyz -y region although this is not necessary for the
ous range in process virtual memory space and o+ version of Linux

maintains flags for the area describing whether it is
writable, executable, or locked among many others. V/|. DYNAMIC REGISTRATION MODULE

The VMA has a pointer to per-area operations, Fi 2 <h h : ts involved
including open and close, that are invoked when lgure 2 shows the major components involve

certain changes to this VMA have happened. in memory registration. At the top is the user appli-
Each process also has a page directory that §&UON that adopt's a pqrtlcu!ar programming model
the root of a two- or four-level hierarchy of othenand uses associated !lbranes to perform message
directories that are used to convert a virtual addreggssmg.dFrequentIy. this is MPI, bl:(t Othder I|brar|esf
into a physical address. These are almost alwa _t_nee c_ommunlcat_lon may tfa e advantage o
tied to the hardware mechanism supported by t réflnlBand directly too, mcludlng file system_s suph
architecture to perform address translation. THE PVFS2 [16]. To reglster memory, the libraries
Linux VM system abstracts these tables and us\@@l call thg vendor-provided mosal “.b rary that uses
them both as a place to keep information on which aslisomated.kerrrel module tg pin pagfs N thde
pages are mapped to which processes and to ahgfﬂefs corﬁ v:_r;ua memﬁry\;l\jl system. hseclzofn
the layout of virtual memory space for each proces'g‘fJlt from the |hrary to the core, on the ﬁtd
The bottom-most entry in a page directory is a pag?é F'%urﬁ 2, s 0\]:vs our new _c(;jor;]pbone:t, \;:I\a/l ©
table entry (PTE). Each PTE contains flags that Caﬂreg, t at' uses eqture; provided by t'e to
be set by the OS or by hardware to indicated if thRanage existing registrations accurately in th_e fe_lce
page referenced by this PTE has been accesseonoFhangeS to the address space of the application.

has been written, for instance.

A. Linux data structures

A. Library routines

B. Hardware driver Messaging libraries that use dreg for caching
The main purpose of our driver is to track thaise calls that are very similar to the underlying

effects the application has on the VM system in thiefiniBand ones:

kernel. It must also interact with existing drivers for int dreg_register(void *addr, size_t len,

the high-speed communication hardware. For the int acl, u32 *lkey, u32 *rkey, u32 *mrh);

sake of discussion, we focus on current drivers foint dreg_deregister (uint32_t mrh);

application

must be sure to provide locking around the use and
modification of registrations in this scenario.

[’;{;’gs’am‘“g model libraries J Two uncomplicated routinesdreg_open and
dreg_close, are used to initialize and finalize the
reg/dereg send/recv library. Initialization requires opening the character

G W device provided by the kernel module, and final-
user ization closes it, triggering release activity of any

ool | T e | piniunpin infiniBand | regions still managed by the kernel.

virt/phys

translations

reg/dereg

B. Kernel module

The kernel module has functions to listen to
the user library component as discussed above and
VM core] also has functions that are registered as callbacks
with the core virtual memory subsystem. Multiple
applications, either independent or cooperating, can
The registration call takes an address, the length é$e the module at once; separate internal structures
the region, and access-control parameters specifié#® used for each distinct memory management
use by InfiniBand drivers. It returns opaque 32-b&pace. As discussed in Section V, each range in the
cookies for the local key, remote key and memoryil"[ua| memory space of a process has an associated
registration handle. This handle is later provided t¢M area structure (VMA). The dreg kernel module
the deregistration call to identify the region, in parkeeps track of registrations that the user library
because overlapping segments are allowed by temponent tells it about and it keeps track of the
underlying device. VMAs that underlie these registrations.

The dreg userspace library calls the original code When signaled through the character device from
in mosal to pin the pages and inform the networlserspace, the module looks up the supplied address
card of the new translations and keys. Then it calfsr the corresponding VMA. The dreg module takes
the dreg kernel module to register the new regiomte of the existing VMA callbacks and replaces
with the VM subsystem. The interface between tHsem with its own callbacks. A new structure to
user and kernel components consists of read ahadld information about the region is created and
write calls on a character device allocated at moduigked onto an internal list of registrations. Dereg-
insertion time. istration is a fairly simple undoing of these events.

The other half of the functionality of dreg is to There are two relevant routines in the array of
watch for VM changes in the application and reporallbacks in the VMA structurespen andclose.
them back to the registration cache. There is ofde kernel callopen when it creates a new VMA
synchronous call: and it calls close when it prepares to discard

int dreg_check (u32 *mrh); an existing VMA, passing the affected VMA as
that polls for changes and, if any are found, returrtie only parameter. There is no callback for other
a registration handle that must be invalidated. Thihanges in VMAS, just their creation and destruc-
might be called at entry to the messaging librarijon. Fortunately this is sufficient to discover all
such as before sends and receives are posted. Are changes that might happen to existing registered
other way to use the dreg library is to allocatenemory regions in a VM. Calls topen andclose
a separate thread to wait for VM changes. Faan be initiated by many system calls, such as
instance, a cache component that manages all themap andmunmap (from free), but all these end
registrations for multiple libraries and NICs carup either destroying a VMA completely and calling
provide a function that will take the necessary stepsose, or splitting an existing VMA by first calling
asynchronously as driven by the kernel module thapen on a new one and then calling ose on the
monitors the VM subsystem. The messaging libragld one.

callback pin/unpin

Fig. 2. Interactions among communication components.

buf 0x40fc2100 buf 0x40fc2a00

V777 ten ox300 V7777777 en x40 and the ability to use the entire set of virtual
handle 0x190 handle 0x22a - memory manipulation system calls safely. In this
l vma 0xfSfch844 \ section we show the costs and benefits of adding
0x40fc2000 close 0x40fc3000 this Consistency.
< First, the overhead of making the extra calls to

) . . the dynamic registration module are very small. A
Fig. 3. VM structures when freeing an entire memory range.

plot of the modified registration and deregistration
C. Examples times on top of the graphs in Figure 1(b) produces

A simple example of two registrations in a Sin_indisti_nggishablg curves and is not shown here. At
gle memory region is shown in Figure 3. Ther&0 Pointis the difference more than 2% away from
are two registered buffers associated with a single€ base case.
underlying physical page. When the user code freesTo detect when the application has unmapped
the buffer that contains that page, the C librarjages outside of the communication library, it is
will use the munmap system call to remove thatnecessary to call into the dreg module periodically.
area from the process address space. The kerhBis can be done either by using a non-blocking
will undo all internal state required to perform thigall, likely just before each use of the cache, or by
unmapping, then as the final step, invoke these devoting a thread to block for events and update the
callback on the VMA to invoke the dreg modulecache accordingly. The difference between doing
It in turn notices that there are two registere@xplicit deregistrations versus calling the blocking
regions associated with the VMA and adds twereg-check call to process memory change events
deregistration entries in a queue for notification t§ less than 1% for small buffers and disappears
userspace. If a thread is blocking in a read on ttgneath the measurement error for buffers larger
character device, the module will wake it up so thadhan about 100 kB. The other way to handle process
it can process the new information immediatelyneémory changes is to devote a separate thread. This
otherwise the contents of the queue will be reaghse is found to bdaster by up to about 15%,
later when polled. provided there is sufficient processor idle time, such

The more complex example in Figure 4 showds when waiting for communications to complete.
what happens when a subset of a pinned memoH)is is because processes often block while waiting
range is freed. The system call that initiates thf®r network or disk operations, permitting other
sequence of events isinmap of the middle of the threads to run in the background and effectively
three pages shown in the figure. In response, thiling the deregistration operation. When the test
VM system provides three separate notifications t& configured to use all available processor cycles
the dreg module. First it splits the existing VMA(ON & uniprocessor machine with a constant busy
by shrinking it (no callback) and opening a nevWPop), the overhead of thread switching can be seen
one below the start point of the unmapping_ Ther@ add an extra 2% to the total elapsed time of the
it again shrinks the initial VMA and opens a newpenchmark. In a true application that performs other
one above the end point of the unmapping. Finally @@lculations, these differences are found not to be
closes the isolated range as requested byitheap Measurable.
call. The dreg module queues the appropriate deregFinally, we describe the real-world application
istration notifications to userspace as the opens afhet in part motivated this work. A material dynam-
closes change the existing mappings. Two of thies code was observed to crash after a large number
mappings are revoked because they overlapped tifeiterations on an InfiniBand cluster using MPI
closed region, while the third survives. when it failed to allocate memory. It uses a C++
framework for message passing that dynamically
allocates and frees memory for communication at

The main benefit of this work is the introductioreach iteration. Their framework implements its own
of consistency into the dynamic registration procesdlocator that acquires memory directly from the

VII. PERFORMANCE

buf 0x40fc2800
7/ len 0xa00
handle 0x190

buf 0x40fc4200
7/ len 0xa00

handle 0x334
buf 0x40fc2e00

len 0x1400
handle 0x22a

\
\
\
N
\
\

vma 0xf6195844

0x40fc2000 0x40fc5000

vma 0xf6975c44
T

> open
1

77777777777777777777 vma 0xf6975¢c44

Fig. 4. Existing VM structures to illustrate freeing a subset of a pinned memory range.

system viammap, thus avoiding thenalloc hooks the cache to ensure it does not grow too large. The
we had configured in the MPI library startup codeoptimization parameters for the caching problem
When these memory regions are passed into theay be different for each library and each applica-
MPI library, they are registered and cached in th@n, though. We plan to develop general strategies

hope that they will be used again; however, the help with this general caching need.

memory is then immediately freed and in this case

returned to the operating system. Since the Infini)
Band driver had locked the pages in these dynamic
buffers but never learned that the application Iateg]
freed the pages, they were effectively leaked: they
OS was unable to reuse them while they were held

by the network driver. Using the dreg module and®]

library for allocations resolved the problem. (6]

;
We have developed a mechanism by which thé]
operating system can notify communication li-[8l
braries of changes in the memory layout of pro-
cesses without requiring changes to existing apye]
plication semantics. This mechanism is necessary
to achieve full performance of high-speed conf2¥!
munication networks while retaining all the safety
and functionality of existing Unix virtual memory
systems. [11]

As discussed above, there is some code duplicas
tion and inefficiency with the current implementag; 3
tion of the kernel module. We plan to offer a patch
to repair that through small changes to the cof&l
Linux virtual memory system and more extensiv[e15]
changes to the NIC libraries.

Application libraries that use this consistent dy-
namic registration system still need to implemerge]
caching, that is, remember the keys and handles
returned by calls tadreg_register and monitor

VIIl. CONCLUSIONS AND FUTURE WORK

REFERENCES

P. Druschel, “Operating system support for high-speed
communication,"Comm. ACM Sept. 1996.

] Myricom, Inc., “Myrinet,” http://www.myri.com.

Quadrics, Ltd., “QsNet,” http://www.quadrics.com.
InfiniBand architecture specificationnfiniBand Trade
Association Std. 1.2, Oct. 2004.

D. Patterson and J. Hennes§omputer architecture: a
quantitative approach3rd ed. M. Kauffman, 2002.
Portable Operating System Interface (POSIMEE
Std. 1003.1, 2004.

MPI: A Message-Passing Interface StandakPl
Forum, Mar. 1994.

M. DeBergalis, P. Corbett, S. Kleiman, A. Lert al,
“The direct access file system,” lrroceedings of
FAST'03 San Francisco, CA, Apr. 2003.

N. Miller, R. Latham, R. Ross, and P. Carns, “PVFS2
for clusters,”ClusterWorld Apr. 2004.

H. Tezuka, F. O'Carroll, A. Hori, and Y. Ishikawa,
“Pin-down cache: A virtual memory management
technique for zero-copy communication,” in
Proceedings of IPDPS 1Drlando, FL, Mar. 1998.
American National Standard FORTRAANSI Std.
X3.9, 1978.

B. Perens, “Electric fence,” http://perens.com, 1995.
G. Watson, “Debug malloc library,” http://dmalloc.com,
2003.

Free Software Foundation, “GNU C library,”
http://www.gnu.org/software/libc, 2001.

J. Liu, J. Wu, S. Kini, P. Wyckoffet al, “High
performance RDMA-based MPI implementation over
InfiniBand,” in Proceedings of ICS’Q3San Francisco,
CA, June 2003.

J. Wu, P. Wyckoff, and D. Panda, “PVFS over
InfiniBand: design and performance evaluation,”
Proceedings of ICPP '03, Oct. 2003.

