
Memory Registration Caching Correctness
Pete Wyckoff

Ohio Supercomputer Center
1224 Kinnear Road

Columbus, OH 43212
pw@osc.edu

Jiesheng Wu
Ask Jeeves

170 Knowles Drive
Los Gatos, CA 95032
jwu@askjeeves.com

Abstract— Fast and powerful networks are becom-
ing more popular on clusters to support applica-
tions including message passing, file systems, and
databases. These networks require special treatment
by the operating system to obtain high throughput
and low latency. In particular, application memory
must be pinned and registered in advance of use.
However, popular communication libraries such as
MPI have interfaces that do not require explicit
registration calls from the user, thus the libraries
must manage this aspect themselves.

Registration caching is a necessary and effective
tool to reuse memory registrations and avoid the
overheads of pinning and unpinning pages around
every send or receive. Current memory registration
caching schemes do not take into account the fact thet
the user has access to a variety of operating system
calls that can alter memory layout and destroy earlier
cached registrations. The work presented in this
paper fixes that problem by providing a mechanism
for the operating system to notify the communication
library of changes in the memory layout of a pro-
cess while preserving existing application semantics.
This permits the safe and accurate use of memory
registration caching.

I. USER-CONTROLLED NETWORK INTERFACES

Computing systems have always had a variety
of devices attached to them to interact with the
external world, including local and wide area net-
work adapters, disk drive controllers, and user input
devices. These are almost always controlled by the
operating system (OS), in the sense that the OS
mediates all interactions of the device with the rest
of the system. For example, when a user wants
to read a block from a disk, the user invokes an
OS interface that in turn issues a command to
the device to put the block into a certain location
of memory. It orchestrates all data motion and
“knows” what parts of memory will be changed
by outstanding device requests.

Recently, though, with increasing capabilities of
external devices, this traditional OS-mediated inter-
action has become a bottleneck. Network interfaces
in particular encounter severe limitations. While
commodity hardware exists to transmit data at
10 Gb/s with latencies of under 5µs, these rates
cannot be achieved by a userspace process when
accessing the device through the intermediary of
the operating system.

Many network devices now exist that provide
“OS bypass” mechanisms to permit users to ma-
nipulate the devices directly and invoke incoming
and outgoing transfers. This is intended to reduce
overheads and thus latency for small operations.
Another capability is called “zero copy”, indicating
that there is no extra buffering between the network
card and the user application buffers, unlike typical
OS-mediated communication paths that include at
least one extra buffer, thus one extra memory copy.
Eliminating memory copies increases the effective
throughput obtained by the application [1]. These
intelligent network interfaces support many features
to decrease the overhead incurred by the user appli-
cation on each transfer, such as scatter/gather, chan-
nel and memory semantics, and atomic operations.
Currently available network interface cards (NICs)
that fall into this category are Myrinet [2], Quadrics
QsNet [3], and InfiniBand [4], among others.

We describe implementation experiences with In-
finiBand in this paper. The InfiniBand Architecture
defines a system area network for interconnecting
nodes that provide compute or storage resources.
In its connected mode of operation, each Infini-
Band NIC maintains a send queue and a receive
queue for communication with the peer. As the user
application posts work requests to the queue pair,
the NIC performs the requests asynchronously and
places status information, if requested, on a comple-

tion queue. Channel semantics require the receiver
to prepost a receive descriptor before the sender
posts the corresponding send. Memory semantics
require only one side to be involved in the data
transfer: Remote Direct Memory Access (RDMA)
write operations move data into the memory of the
peer directly and RDMA read operations fill local
memory from peer memory, both without active
participation of the remote CPU. Current hardware
provides 1 GB/s of user data throughput with one-
way small message transfer latencies of around
5 µs.

II. M EMORY REGISTRATION

Users of zero-copy devices must coordinate with
the OS to register memory regions needed for
communication. The goal of memory registration
is twofold: first, to allocate physical pages for
process virtual memory and ensure they will not
be swapped out; and second, to obtain the mapping
of virtual addresses to physical addresses to provide
to the NIC.

The InfiniBand kernel module and userspace li-
braries offer a set of basic calls to perform memory
registration management. To register memory for
use in later transfers, an application supplies a
buffer address and length and receives in return an
opaque handle that is used later to deregister the
memory region. The registration call also returns
two more opaque keys, one for local access and
one for remote access, that can be delivered to other
software components and other machines to permit
them to access the memory region.

Figure 1(a) shows the effect of memory regis-
tration calls on basic InfiniBand performance. The
upper curve shows the throughput obtained when
all the memory is registered in advance of the test,
and the lower curve includes the time to register and
deregister each memory region during the test. The
difference between these curves can be understood
by examining Figure 1(b), which shows the time
for the registration and deregistration calls. These
delays, while small, are significant on the time scale
of the transfer and cause low throughput values
shown in Figure 1(a).

Because memory registration and deregistration
operations are so expensive compared to the time

to perform high-speed data transfers, many library
and application writers are motivated to provide a
cache infrastructure to avoid the need to deregister
and later reregister the same memory regions. This
works quite well in terms of performance, but the
cache has many fundamental problems in light of
the full Unix VM system. Caching is described in
detail in Section IV.

III. L INUX MEMORY MANAGEMENT

This section gives a brief overview of the behav-
ior of a virtual memory system, and in particular,
that of the Linux kernel, version 2.6.9. Many details
are overlooked here for simplicity of presentation.

Virtual memory (VM) [5] is a mechanism to
provide to each application the illusion of a full
32- or 64-bit address space but allow sharing of a
significantly smaller amount of physical memory.
It involves hardware support to divide physical
memory into blocks (pages or segments) and to
provide a protection scheme to restrict access only
to particular processes. Hardware structures such as
translation look-aside buffers and page-table walk-
ers exist to speed up access to virtual to physical
memory maps.

The use of VM in modern computing systems is
so deeply ingrained that it would be highly unlikely
that application programmers would give it up for
the sake of speeding up network communications;
hence, we consider in this paper ways to encourage
the cooperation of user-controlled NICs and the
VM system.

A. System calls

Traditional Unix semantics offer a variety of
library and system calls by which a process can
manipulate its virtual memory layout.

The system callmmap was first designed for
mapping files into a process address space, but
now is a general-purpose mapping facility that
can be used for anonymous or shared memory,
files, and hardware devices. This call has many
parameters by which one can specify memory pro-
tection, suggested mapping location, file descriptor
representing the target file or device, and extent of
the range. To undo a mapping, the callmunmap is
used.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Ba
nd

wi
dt

h
(M

B/
s)

Message size (kB)

Pre-registered buffers
Unregistered buffers

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000

Ti
m

e
(u

s)

Message size (kB)

Registration
Deregistration

Fig. 1. (a) Impact of memory registration and deregistration on bandwidth. (b) Costs of memory registration and deregistration.

Specialized versions of these basic functions,
called brk and sbrk, were used traditionally to
change the data segment size. Now they essen-
tially call mmap andmunmap to manipulate memory
around a certain point in the address space. Users
generally use the library callsmalloc andfree that
in turn invoke these system interfaces to change the
VM.

Other less-often used calls can manipulate the
VM space also.Mremap can enlarge, shrink, or
move a region.Mprotect will change the protection
bits of a region, regulating the ability of the process
to read, write, or execute the contents. To inform the
VM system that a region must not be swapped out
to disk,mlock andmunlock are provided as well as
versions that affect all currently mapped memory.
These usually require some sort of extra permis-
sions not held by typical user processes. There
are alsoshmat and shmdt to access system-wide
shared memory, and various real-time POSIX [6]
extensions to control typed memory objects.

Finally, process and thread creation and destruc-
tion events cause changes to the VM layout. In
particular, fork and vfork create a new process
by duplicating the VM of the current process. Most
implementations use the copy-on-write technique
to avoid copying all the process memory unless
necessary. The Linuxclone is a superset of process
and thread creation with options to specify potential
sharing of parts of the VM space by the newly cre-
ated and original process. Implicitly, the operating
system will further grow and shrink the stack of
each process as needed, leading to another way for

memory to be deallocated or remapped.

B. Memory pinning

As discussed in Section II, memory registration
is needed both to translate virtual to physical ad-
dresses for the NIC and to ensure that that mapping
remains constant across the lifetime of network op-
erations involving the affected memory. The Linux
VM provides an OS function that achieves both
these objectives (get user pages), but it also pro-
vides to applications system calls that can change
the virtual to physical address mappings, foiling any
attempt at caching by a library.

An alternative option to pinning user memory
is to provide preregistered regions allocated by the
OS for the use of the application in communicating
with the device. This is the approach used by other
hardware-intensive systems, such as cameras and
video frame buffers. It is not suitable for the types
of applications that use high performance network-
ing, though, because the APIs there have been
developed to accommodate the use of arbitrary user
memory in send and receive operations. Message
passing codes that use, for example, MPI [7], a
popular communication library, do not know until
runtime which parts of the address space will be
sent or received to other processes. This situation
is also found in file systems that implementread
and write without intermediate buffers, including
DAFS [8] and PVFS2 [9].

Performance is another reason to require the use
of an arbitrary part of the process address space:
a file system read operation issued by the user

provides a destination buffer calculated at runtime.
If the data from the network appears in a different
pre-pinned buffer, a memory copy to move the data
to its real destination must follow, but this extra
copy considerably degrades overall performance.

IV. M EMORY REGISTRATION CACHING

When the communication device requires mem-
ory registration but the API used by the applica-
tion does not demand explicit registration calls,
caching [10] is a common mechanism used to avoid
the performance penalty illustrated in Figure 1(a).
However, unexpected changes to the VM may occur
due to application behavior not directly related to
communications.

A simple way to avoid these unexpected changes
by the application is to disable all calls that modify
the virtual memory layout. Codes that are compiled
statically and do not make VM-related system calls
as described above lend themselves to an easy
registration caching solution: at the first call to a
communication library, look up the affected mem-
ory range in a private cache and register it if it is
not found. Deregistration is not necessary unless the
total number of registrations or amount of pinned
memory exceed system-imposed limits. This class
of code is becoming increasingly rare, but some
older applications written in FORTRAN 77 [11],
for example, would still work with this approach.

Since the bulk of VM activity is initiated by user
calls to malloc andfree, a common approach in
the past has been to focus only on this subset of
the overall problem. By replacing the standard C
library calls at link- or run-time, a communication
library can keep track of the state of memory
affected by these calls and safely cache registrations
of regions used for messaging. Calls tofree by
the application will cause the library to deregister
the memory before releasing it to the operating
system for reuse. This is the approach used by
the Myrinet drivers, among others. There are two
major problems with this approach: first, not all
memory activity is initiated by calls tomalloc
and free. Of the list in Section III-A, some of
the most common non-malloc activity found in
applications are file mappings, shared memory, and
process stack changes. The second major problem

is that applications are constrained to use this
one particularmalloc implementation. Frequently
for debugging or validation, programmers will use
malloc replacements such as Electric Fence [12] or
dmalloc [13] to track and display memory usage by
their applications. This sort of debugging is made
impossible by this approach.

For users of the GNU C library [14], itsmalloc
implementation provides hooks by which a callback
to a user-provided function occurs upon entry to any
of the malloc-related routines. This permits some
more flexibility by retaining the system-provided
malloc but suffers the same problems described
above plus a new one: the hook forfree does not
provide the size of the originally allocated object,
requiring either another table to cache the size from
malloc or probing internal structures of themalloc
implementation to discover it. This is the approach
used by mvapich [15], an implementation of MPI
on InfiniBand. A different approach offered by the
GNU C library is to usemallopt to restrict it to
using only sbrk, not mmap, and never to return
memory to the operating system. This avoids the
free problem but adds serious restrictions to pro-
cess growth in address space-limited architectures
like the 32-bit Intel x86.

Another way to get “in front” of VM-modifying
calls is to include symbols in the communication
library that override the default weak symbols pro-
vided by the C library formmap, mremap, and so
on. This approach works, but not for calls initiated
by the C library itself. So for instance, ifmalloc
or any other routine that allocates memory on the
user’s behalf needs to usemmap, it calls into the
C library internal symbol mmap which can not
be overridden. Furthermore, not all of the VM-
modifying calls are exported via weak symbols, in-
cluding shmat andmlock, and intercepting system
calls in this way requires parsing all the parameters
again since the behavior formmap in particular
varies considerably depending on its many inputs.

V. L INUX VM INTERACTIONS

The approach presented in this paper does not
alter the malloc library or in any way restrict
the activities of the user-space application—it may
safely use the entire suite of VM calls provided

by the OS. Instead we take advantage of features
in the Linux virtual memory subsystem to receive
notification of “significant” VM changes in pro-
cesses and manage cached registrations using that
information.

Our module uses only currently exported public
kernel interfaces. No modifications to a stock kernel
tree of any sort are required. Restricting ourselves
to use of just the exported interface makes module
maintenance much easier as the kernel evolves as
no patch is required for each particular release of
the kernel. Possibilities for optimization that do
need changes in the kernel core are discussed in
Section VIII, however.

A. Linux data structures

There are a few major data structures that track
the state of process memory allocations in Linux.
Each process has a list of virtual memory area
structures (VMAs). Each area describes a contigu-
ous range in process virtual memory space and
maintains flags for the area describing whether it is
writable, executable, or locked among many others.
The VMA has a pointer to per-area operations,
including open and close, that are invoked when
certain changes to this VMA have happened.

Each process also has a page directory that is
the root of a two- or four-level hierarchy of other
directories that are used to convert a virtual address
into a physical address. These are almost always
tied to the hardware mechanism supported by the
architecture to perform address translation. The
Linux VM system abstracts these tables and uses
them both as a place to keep information on which
pages are mapped to which processes and to alter
the layout of virtual memory space for each process.
The bottom-most entry in a page directory is a page
table entry (PTE). Each PTE contains flags that can
be set by the OS or by hardware to indicated if the
page referenced by this PTE has been accessed or
has been written, for instance.

B. Hardware driver

The main purpose of our driver is to track the
effects the application has on the VM system in the
kernel. It must also interact with existing drivers for
the high-speed communication hardware. For the
sake of discussion, we focus on current drivers for

InfiniBand hardware, although similar mechanisms
are used by most network implementations.

The InfiniBand driver library provides routines
that a user application or communication library
calls to register and unregister memory. These
functions save a considerable amount of local state
in userspace tables as well as in the kernel mod-
ule, called “mosal,” that actually does the locking.
For our implementation we chose not to alter the
mosal kernel-level driver or user library. Suggested
improvements from integration are described in
Section VIII.

The mosal driver uses two mechanisms provided
by the Linux kernel to pin physical pages. The
first is to increase the reference count in the page
structure. The mechanisms that come into play
during memory pressure are careful never to free
such pages. They also set theVM LOCKED flag in the
VMAs of processes by calling essentiallymlock on
each region although this is not necessary for the
current version of Linux.

VI. DYNAMIC REGISTRATION MODULE

Figure 2 shows the major components involved
in memory registration. At the top is the user appli-
cation that adopts a particular programming model
and uses associated libraries to perform message
passing. Frequently this is MPI, but other libraries
that need communication may take advantage of
InfiniBand directly too, including file systems such
as PVFS2 [16]. To register memory, the libraries
will call the vendor-provided mosal library that uses
an associated kernel module to pin pages in the
kernel’s core virtual memory subsystem. A second
path from the library to the VM core, on the left
of Figure 2, shows our new component, called
“dreg,” that uses features provided by the VM to
manage existing registrations accurately in the face
of changes to the address space of the application.

A. Library routines

Messaging libraries that use dreg for caching
use calls that are very similar to the underlying
InfiniBand ones:
int dreg register(void *addr, size t len,

int acl, u32 *lkey, u32 *rkey, u32 *mrh);

int dreg deregister(uint32 t mrh);

dreg

dreg.ko

programming model libraries
PVFS, MPI, ...

application

InfiniBand
NIC

mosal

mosal.ko

mmap
munmap

callback

reg/dereg

callback

kernel

user

reg/dereg send/recv

virt/phys
translations

VM core

send/recv

pin/unpin

pin/unpin

Fig. 2. Interactions among communication components.

The registration call takes an address, the length of
the region, and access-control parameters specific to
use by InfiniBand drivers. It returns opaque 32-bit
cookies for the local key, remote key and memory
registration handle. This handle is later provided to
the deregistration call to identify the region, in part
because overlapping segments are allowed by the
underlying device.

The dreg userspace library calls the original code
in mosal to pin the pages and inform the network
card of the new translations and keys. Then it calls
the dreg kernel module to register the new region
with the VM subsystem. The interface between the
user and kernel components consists of read and
write calls on a character device allocated at module
insertion time.

The other half of the functionality of dreg is to
watch for VM changes in the application and report
them back to the registration cache. There is one
synchronous call:

int dreg check(u32 *mrh);

that polls for changes and, if any are found, returns
a registration handle that must be invalidated. This
might be called at entry to the messaging library
such as before sends and receives are posted. An-
other way to use the dreg library is to allocate
a separate thread to wait for VM changes. For
instance, a cache component that manages all the
registrations for multiple libraries and NICs can
provide a function that will take the necessary steps
asynchronously as driven by the kernel module that
monitors the VM subsystem. The messaging library

must be sure to provide locking around the use and
modification of registrations in this scenario.

Two uncomplicated routines,dreg open and
dreg close, are used to initialize and finalize the
library. Initialization requires opening the character
device provided by the kernel module, and final-
ization closes it, triggering release activity of any
regions still managed by the kernel.

B. Kernel module

The kernel module has functions to listen to
the user library component as discussed above and
also has functions that are registered as callbacks
with the core virtual memory subsystem. Multiple
applications, either independent or cooperating, can
use the module at once; separate internal structures
are used for each distinct memory management
space. As discussed in Section V, each range in the
virtual memory space of a process has an associated
VM area structure (VMA). The dreg kernel module
keeps track of registrations that the user library
component tells it about and it keeps track of the
VMAs that underlie these registrations.

When signaled through the character device from
userspace, the module looks up the supplied address
for the corresponding VMA. The dreg module takes
note of the existing VMA callbacks and replaces
them with its own callbacks. A new structure to
hold information about the region is created and
linked onto an internal list of registrations. Dereg-
istration is a fairly simple undoing of these events.

There are two relevant routines in the array of
callbacks in the VMA structure:open and close.
The kernel callsopen when it creates a new VMA
and it calls close when it prepares to discard
an existing VMA, passing the affected VMA as
the only parameter. There is no callback for other
changes in VMAs, just their creation and destruc-
tion. Fortunately this is sufficient to discover all
the changes that might happen to existing registered
memory regions in a VM. Calls toopen andclose
can be initiated by many system calls, such as
mremap andmunmap (from free), but all these end
up either destroying a VMA completely and calling
close, or splitting an existing VMA by first calling
open on a new one and then callingclose on the
old one.

close

�������
�������
�������
������� ������������������

���������
���������

0x40fc2000 0x40fc3000

vma 0xf5fcb844

buf 0x40fc2a00
len 0x400
handle 0x22a

buf 0x40fc2100
len 0x300
handle 0x190

Fig. 3. VM structures when freeing an entire memory range.

C. Examples

A simple example of two registrations in a sin-
gle memory region is shown in Figure 3. There
are two registered buffers associated with a single
underlying physical page. When the user code frees
the buffer that contains that page, the C library
will use the munmap system call to remove that
area from the process address space. The kernel
will undo all internal state required to perform this
unmapping, then as the final step, invoke theclose
callback on the VMA to invoke the dreg module.
It in turn notices that there are two registered
regions associated with the VMA and adds two
deregistration entries in a queue for notification to
userspace. If a thread is blocking in a read on the
character device, the module will wake it up so that
it can process the new information immediately,
otherwise the contents of the queue will be read
later when polled.

The more complex example in Figure 4 shows
what happens when a subset of a pinned memory
range is freed. The system call that initiates this
sequence of events ismunmap of the middle of the
three pages shown in the figure. In response, the
VM system provides three separate notifications to
the dreg module. First it splits the existing VMA
by shrinking it (no callback) and opening a new
one below the start point of the unmapping. Then
it again shrinks the initial VMA and opens a new
one above the end point of the unmapping. Finally it
closes the isolated range as requested by themunmap
call. The dreg module queues the appropriate dereg-
istration notifications to userspace as the opens and
closes change the existing mappings. Two of the
mappings are revoked because they overlapped the
closed region, while the third survives.

VII. PERFORMANCE

The main benefit of this work is the introduction
of consistency into the dynamic registration process

and the ability to use the entire set of virtual
memory manipulation system calls safely. In this
section we show the costs and benefits of adding
this consistency.

First, the overhead of making the extra calls to
the dynamic registration module are very small. A
plot of the modified registration and deregistration
times on top of the graphs in Figure 1(b) produces
indistinguishable curves and is not shown here. At
no point is the difference more than 2% away from
the base case.

To detect when the application has unmapped
pages outside of the communication library, it is
necessary to call into the dreg module periodically.
This can be done either by using a non-blocking
call, likely just before each use of the cache, or by
devoting a thread to block for events and update the
cache accordingly. The difference between doing
explicit deregistrations versus calling the blocking
dreg check call to process memory change events
is less than 1% for small buffers and disappears
beneath the measurement error for buffers larger
than about 100 kB. The other way to handle process
memory changes is to devote a separate thread. This
case is found to befaster by up to about 15%,
provided there is sufficient processor idle time, such
as when waiting for communications to complete.
This is because processes often block while waiting
for network or disk operations, permitting other
threads to run in the background and effectively
hiding the deregistration operation. When the test
is configured to use all available processor cycles
(on a uniprocessor machine with a constant busy
loop), the overhead of thread switching can be seen
to add an extra 2% to the total elapsed time of the
benchmark. In a true application that performs other
calculations, these differences are found not to be
measurable.

Finally, we describe the real-world application
that in part motivated this work. A material dynam-
ics code was observed to crash after a large number
of iterations on an InfiniBand cluster using MPI
when it failed to allocate memory. It uses a C++
framework for message passing that dynamically
allocates and frees memory for communication at
each iteration. Their framework implements its own
allocator that acquires memory directly from the

�������������������������
�������������������������
�������������������������
�������������������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

0x40fc2000 0x40fc5000

vma 0xf6195844

buf 0x40fc2800
len 0xa00
handle 0x190

buf 0x40fc2e00
len 0x1400

buf 0x40fc4200
len 0xa00
handle 0x334

vma 0xf6975c44

vma 0xf62522c4 vma 0xf6975c44

vma 0xf6195844

open

open

close

handle 0x22a

Fig. 4. Existing VM structures to illustrate freeing a subset of a pinned memory range.

system viammap, thus avoiding themalloc hooks
we had configured in the MPI library startup code.
When these memory regions are passed into the
MPI library, they are registered and cached in the
hope that they will be used again; however, the
memory is then immediately freed and in this case
returned to the operating system. Since the Infini-
Band driver had locked the pages in these dynamic
buffers but never learned that the application later
freed the pages, they were effectively leaked: the
OS was unable to reuse them while they were held
by the network driver. Using the dreg module and
library for allocations resolved the problem.

VIII. C ONCLUSIONS AND FUTURE WORK

We have developed a mechanism by which the
operating system can notify communication li-
braries of changes in the memory layout of pro-
cesses without requiring changes to existing ap-
plication semantics. This mechanism is necessary
to achieve full performance of high-speed com-
munication networks while retaining all the safety
and functionality of existing Unix virtual memory
systems.

As discussed above, there is some code duplica-
tion and inefficiency with the current implementa-
tion of the kernel module. We plan to offer a patch
to repair that through small changes to the core
Linux virtual memory system and more extensive
changes to the NIC libraries.

Application libraries that use this consistent dy-
namic registration system still need to implement
caching, that is, remember the keys and handles
returned by calls todreg register and monitor

the cache to ensure it does not grow too large. The
optimization parameters for the caching problem
may be different for each library and each applica-
tion, though. We plan to develop general strategies
to help with this general caching need.

REFERENCES

[1] P. Druschel, “Operating system support for high-speed
communication,”Comm. ACM, Sept. 1996.

[2] Myricom, Inc., “Myrinet,” http://www.myri.com.
[3] Quadrics, Ltd., “QsNet,” http://www.quadrics.com.
[4] InfiniBand architecture specification, InfiniBand Trade

Association Std. 1.2, Oct. 2004.
[5] D. Patterson and J. Hennessy,Computer architecture: a

quantitative approach, 3rd ed. M. Kauffman, 2002.
[6] Portable Operating System Interface (POSIX), IEEE

Std. 1003.1, 2004.
[7] MPI: A Message-Passing Interface Standard, MPI

Forum, Mar. 1994.
[8] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent,et al.,

“The direct access file system,” inProceedings of
FAST’03, San Francisco, CA, Apr. 2003.

[9] N. Miller, R. Latham, R. Ross, and P. Carns, “PVFS2
for clusters,”ClusterWorld, Apr. 2004.

[10] H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa,
“Pin-down cache: A virtual memory management
technique for zero-copy communication,” in
Proceedings of IPDPS 12, Orlando, FL, Mar. 1998.

[11] American National Standard FORTRAN, ANSI Std.
X3.9, 1978.

[12] B. Perens, “Electric fence,” http://perens.com, 1995.
[13] G. Watson, “Debug malloc library,” http://dmalloc.com,

2003.
[14] Free Software Foundation, “GNU C library,”

http://www.gnu.org/software/libc, 2001.
[15] J. Liu, J. Wu, S. Kini, P. Wyckoff,et al., “High

performance RDMA-based MPI implementation over
InfiniBand,” in Proceedings of ICS’03, San Francisco,
CA, June 2003.

[16] J. Wu, P. Wyckoff, and D. Panda, “PVFS over
InfiniBand: design and performance evaluation,”
Proceedings of ICPP ’03, Oct. 2003.

